Tag: maths

Questions Related to maths

The usual form of $\displaystyle 4\cdot 56\times 10^{-5}$ is:

  1. $0.0000456$

  2. $0.00000456$

  3. $0.000456$

  4. $456000$


Correct Option: A
Explanation:

$\displaystyle 4\cdot 56\times 10^{-5}=0\cdot 00000456$

If $0.00044=$$\displaystyle 4\cdot 4\times 10^{n}$ then, find the value of $ n$.

  1. $4$

  2. $5$

  3. $-4$

  4. $-5$


Correct Option: C
Explanation:

$\displaystyle 0\cdot 00044= \frac{44}{100000}= \frac{4\cdot 4\times10^{1}}{10^{5}}$
$=\displaystyle 4\cdot 4\times 10^{-4}$
Now
$\displaystyle 4\cdot 4\times 10^{-4}=4\cdot 4\times 10^{n}$
$\displaystyle \therefore n=-4$

Find the value of $n$ such that $502000000=$$\displaystyle 5\cdot 02\times 10^{n}$.

  1. $5$

  2. $7$

  3. $-8$

  4. $8$


Correct Option: D
Explanation:

$\displaystyle 50,20,00,000=5\cdot 02\times 10^{8}$
Now $\displaystyle 5\cdot 02\times 10^{8}= 5\cdot 02\times 10^{n}$
$\displaystyle \therefore n= 8$

The standard form of $\displaystyle \frac{1}{10000000}$ is:

  1. $\displaystyle 1\times 10^{-7}$

  2. $\displaystyle 0\cdot 1\times 10^{-7}$

  3. $\displaystyle 1\times 10^{7}$

  4. $\displaystyle 1\times 10^{-6}$


Correct Option: A
Explanation:

$\displaystyle \frac{1}{10000000}= \frac{1}{10^{7}}= 1\times 10^{-7}$

The distance of the sun from the earth is $1,49,60,00,00,000$ m. Express it in standard form.

  1. $\displaystyle 1\cdot 496\times 10^{-10}$

  2. $\displaystyle 1\cdot 496\times 10^{-11}$

  3. $\displaystyle 1\cdot 496\times 10^{10}$

  4. $\displaystyle 1\cdot 496\times 10^{11}$


Correct Option: D
Explanation:

$1,49,60,00,00,000=$$\displaystyle 1\cdot 496\times 10^{11}$ m

The size of a plant cell is $0.00005473$ m. This number can also be written as

  1. $\displaystyle 5\cdot 473\times 10^{-3}$

  2. $\displaystyle 5\cdot 473\times 10^{-5}$

  3. $\displaystyle 5\cdot 473\times 10^{11}$

  4. $\displaystyle 5\cdot 473\times 10^{5}$


Correct Option: B
Explanation:

$\displaystyle 0\cdot 00005473=\frac{5473}{100000000}=\frac{5\cdot 473\times 10^{3}}{10^{8}}$
=$\displaystyle 5\cdot 473\times 10^{-5}$

The usual form of $\displaystyle 2\cdot 73\times 10^{12}$ is:

  1. $273000000000$

  2. $2.730000000000$

  3. $2730000000000$

  4. $27300000000000$


Correct Option: C
Explanation:

$2.73 \times 10^{12} $$=2730000000000$

The value of ${ \left( 256 \right)  }^{ 0.16 }.{ \left( 256 \right)  }^{ 0.09 }$ is:

  1. $4$

  2. $16$

  3. $64$

  4. $256.25$

  5. $-16$


Correct Option: A
Explanation:

we know,


$a^{m} \times a^{n}=a^{m+n}$

and $256=4^{4}$

$\Rightarrow (256)^{0.16} \times (256)^{0.09}$ $=(256)^{0.25}$

we know,
$(a^{m})^{n}=a^{mn}$

$\Rightarrow (4^{4})^{0.25}$$=4^{4 \times 0.25}$$=4^1=4$

What is the difference in the place values of the digit 8 in the number 9380568?

  1. 79992

  2. 78992

  3. 799992

  4. 789992


Correct Option: A

Find the value of each of the following, using the column method.
$(23)^2$
$(52)^2$

  1. 549, 2724

  2. 549, 2704

  3. 529, 2724

  4. 529, 2704


Correct Option: D
Explanation:

$(23)^2$
$a=2, b=3$

$i$ $ii$ $iii$
$a^2$ $2ab$ $b^2$
$4$$1$           $\underline { 5 }$ $12$$+0$           $1\underline { 2 }$ $\underline { 9 }$

$\therefore (23)^2=529$

$(52)^2$
$a=5, b=2$

$i$ $ii$ $iii$
$a^2$ $2ab$ $b^2$
$25$$+2$          $\underline { 27 }$ $20$$+0$          $2\underline { 0 }$ $\underline { 4 }$

$\therefore (52)^2=2704$