Tag: maths

Questions Related to maths

$\displaystyle ax^{2}+2hxy+by^{2}=0$ represents a pair of straight lines through origin & angle between them is given by
$\displaystyle \tan \theta=\frac{2\sqrt{h^{2}-ab}}{a+b}$. If the lines are perpendicular then $\displaystyle a+b=0 $ and the equation of bisectors is given by  $\displaystyle \frac{x^{2}-y^{2}}{a-b}=\frac{xy}{h}$
The general equation of second degree given by
$\displaystyle ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$ represent a pair of straight lines if $\displaystyle \triangle =0 $ or 
$ \displaystyle \begin{vmatrix}a&h  &g \\ h&b  &f \\ g&f  &c \end{vmatrix}=0 $ or $\displaystyle abc+2fgh-af^{2}-bg^{2}-ch^{2}=0$
On the basis of above information answer the following question

If the lines joining origin to the points of intersection of the line $\displaystyle x +y = 1$ with the curve $\displaystyle x^{2}+y^{2}+x-2y-m = 0$ are perpendicular to each other, then value of $m$ is

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle -\frac{1}{2}$

  3. $\displaystyle 1 $

  4. $\displaystyle -1 $


Correct Option: A
Explanation:

As the line $x+y=1$ intersect the curve,$\displaystyle x^{2}+y^{2}+x-2y-m=0$


$\displaystyle \Rightarrow  x^{2}+y^{2}+\left ( x-2y \right )\left ( 1 \right )-m\left ( 1 \right )^{2}=0$

$\displaystyle \Rightarrow  x^{2}+y^{2}+\left ( x-2y \right )\left ( x+y \right )-m\left ( 1 \right )^{2}=0$

$\displaystyle \Rightarrow  x^{2}+y^{2}+\left ( x-2y \right )\left ( x+y \right )-m\left ( x+y \right )^{2}=0$

$\displaystyle \Rightarrow  x^{2}+y^{2}+\left ( x^{2}-xy-2y^{2} \right )-m\left ( x^{2}+y^{2}+2xy \right )=0$

$\displaystyle \Rightarrow  x^{2}\left ( 2-m \right )+y^{2}\left ( 1-2-m \right )+xy\left ( 1-2m \right )=0$      ......(*)

Now pair of straight lines given bye (*) will be $\perp$er if

$\displaystyle 2-m+1-2-m=0$ (Using $a+b=0$)

$\displaystyle \Rightarrow m=\frac{1}{2}$

 If the lines joining the origin to the intersection of the line $y=mx+ 2$ and the curve $x^{2}+ y^{2}= 1$ are at right angles, then

  1. $m^{2}=1$

  2. $m^{2} = 3$

  3. $m^{2}= 7$

  4. $2m^{2} = 1$


Correct Option: C
Explanation:

Joint equation of the lines joining the origin and the point of intersection of the line $y =mx + 2$ and
the curve $x^{2} + y^{2}=1$ is
$ \displaystyle x^{2} +y^{2} =\left( \frac{y-mx}{2}\right)^{2} $
$ x^{2}(4 -m^{2} )+2mxy +3y^{2} = 0$
Since these lines are at right angles
$4 -m^{2} + 3 =0 \Rightarrow m^{2} = 7$

If the straight lines joining the origin and the points of intersection of the curve $5x^2 + 12xy -6y^2 + 4x -2y + 3 = 0$  and $x + ky -1 = 0$ are equally inclined to the co-ordinate axis, then the value of $k$

  1. is equal to $1$

  2. is equal to $-1$

  3. is equal to $2$

  4. does not exist in the set of real numbers


Correct Option: B
Explanation:

Homogenizing the curve with the help of the straight line.


$5x^2+12xy-6y^2+4x(x+ky) -2y(x+ky)+3(x+ky)^2 = 0$

$12x^2 + (10 + 4k + 6k) xy + (3k^2 -2k -6)y^2 = 0$

Lines are equally inclined to the coordinate axes

$\therefore$ coefficient of $xy = 0$

$\Rightarrow 10k + 10 = 0 \Rightarrow k = -1$

The lines joining the origin to the point of intersection of $3x^2 + mxy - 4x + 1 = 0$ and $2x + y - 1= 0$  are at right angles. Then which of the following is/are possible value/s of $m?$

  1. $-4$

  2. $4$

  3. $7$

  4. $3$


Correct Option: A,B,C,D
Explanation:

By application of the method of homogenization we get
$3x^2+mxy-4x(2x+y)+1(2x+y)^{2}$
$=3x^2+mxy-8x^2-4xy+4x^2+y^2+4xy$
$=-x^2+mxy+y^2$
$=0$
Hence the equations of the lines is given by $ x^2-mxy-y^2=0$
Hence the lines are perpendicular for all values of $m.$

Find the equation of the lines joining the origin to the points of intersection of the curve $2x^2 + 3xy -4x + 1 = 0$ and the line $3x + y = 1$

  1. $x^2-y^2-5xy=0$

  2. $x^2+y^2-5xy=0$

  3. $x^2+y^2+5xy=0$

  4. $None\ of\ these$


Correct Option: A
Explanation:

Given equations of curve and the line are $2x^2 + 3xy -4x + 1 = 0$ and $3x + y = 1$.
Homogenising the curve with the line gives
$2x^2+3xy-4x(3x+y)+(3x+y)^2=0$
$\Rightarrow 2x^2+3xy-12x^2-4xy+9x^2+y^2+6xy=0$
$\Rightarrow y^2-x^2+5xy=0$
$\therefore$ The equation of the lines joining the origin to the points of intersection of the curve and hte line is $x^2-5xy-

y^2=0$
Hence, option A.

Find the area of equilateral  triangle inscribed in a circle of unit radius.

  1. 3/4

  2. $\dfrac {3\sqrt { 3 } }{4}$

  3. 3

  4. $\frac { 3\sqrt { 3 } }{ 2 } $


Correct Option: B
Explanation:

The radius of circumcircle  of equilateral triangle is  $\dfrac 23h=1\h=\dfrac 32$

The side of equilateral triangle is given as $\dfrac{4h}{\sqrt 3} \\dfrac{4}{\sqrt 3}\times \dfrac 32=2\sqrt 3$ 
The area of triangle is given as $\dfrac {\sqrt 3}{4}(2\sqrt 3)^2=3\sqrt 3$

A square is inscribed in a circle of radius $7: cm$. Find area of the square.

  1. $98 : cm^{2}$

  2. $97 : cm^{2}$

  3. $91 : cm^{2}$

  4. $90 : cm^{2}$


Correct Option: A
Explanation:

Given,
Radius of the circle $=7:cm$
Let the side of the square be $a:cm$.
A square when inscribed in a circle then the diameter of the circle must be diagonal of the square.
Therefore,
Diagonal of square $=\sqrt {a^2+a^2}$
                                 $=a\sqrt 2$
Now,
Diameter of the circle $=2\times 7$
                                  $=14:cm$
$=>\sqrt 2 a=14$
$=>a=\dfrac{14}{\sqrt 2}$
$=>a=7\sqrt 2: cm$
Therefore,
Area of square $=a^2$
                       $=(7\sqrt 2 cm)^2$
                       $=(7\sqrt 2 cm)(7\sqrt 2 cm)$
                       $=98: cm^2$

The ratio of areas of square and circle is given n : 1 where n is a natural number. If the ratio of side of square and radius of circle is k :1, where k is a natural number, then n will be multiple of

  1. $77$

  2. $22$

  3. $154$

  4. Data insufficient


Correct Option: C
Explanation:

Let a be the side of the square & r be the radius of the circle, then $\dfrac {a^2}{\pi r^2}=n$
Now, $\dfrac {a}{r}=k$
$k=\dfrac {a}{r}=\sqrt {\dfrac {22\times n}{7}},n$ has to be multiple of $22\times 7=154$.

A rectangular sheet of acrylic is 50 cm by 25 cm . From it 60 circular buttons, each of diameter 2.8 cm have been cut out. The area of the remaining sheet is

  1. 1260.82 $\displaystyle cm^{2}$

  2. 880.4 $\displaystyle cm^{2}$

  3. 630.4 $\displaystyle cm^{2}$

  4. None of these


Correct Option: B
Explanation:

Required area
= Area of sheet - 60 $\displaystyle \times $ area of 1 button
$\displaystyle=\left ( 50\times 25-60\times \dfrac{22}{7}\times 1.4\times 1.4 \right )cm^{2}$
$\displaystyle =\left ( 1250-369.6 \right )cm^{2}$
$\displaystyle =880.4cm^{2}$

If one side of a square is 2.4 m. Then what will be the area of the circle inscribed in the square?

  1. $1.44 \displaystyle\, m^{2} $

  2. $\displaystyle 1\frac{11}{25}\pi $ $\displaystyle m^{2} $

  3. $\displaystyle \frac{11}{25}\pi $ $\displaystyle m^{2} $

  4. None of these


Correct Option: B
Explanation:

The radius of the circle inscribed in the square
of side 2.4m
$\displaystyle r=\dfrac{2.4}{4}m=1.2m$
$\displaystyle \therefore$ Area of the circle $\displaystyle =\pi r^{2}$ square units
$\displaystyle =\pi \times 1.2 m\times 1.2 m$
$\displaystyle =1.44 \pi m^{2}$

$\displaystyle =1\dfrac{11}{25}\pi m^{2}$
$\displaystyle \therefore $ The required area $\displaystyle =1\frac{11}{25}\pi m^{2}$