Tag: maths

Questions Related to maths

State true or false:

In parallelogram $ ABCD $. $ E $ is the mid-point of $ AB $ and $ AP $ is parallel to $ EC $ which meets $ DC $ at point $ O $ and $ BC $ produced at $ P $. Hence
$ BP= 2AD $


  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$s, APB and ECB,
$\angle ABP = \angle EBC $ (Common angle)
$\angle PAB = \angle CEB$ (Corresponding angles of parallel lines)
$\angle APB = \angle ECB $ (Third angle of the triangle)
Thus $\triangle APB \sim \triangle ECB$ 
Hence, $\frac{AB}{EB} = \frac{BP}{BC}$ (Corresponding sides of similar triangles)
$2 = \frac{BP}{BC}$
$BP = 2 BC$
$BP = 2 AD$  (BC = AD)

In quadrilateral ABCD, the diagonals AC and BD intersect each at point O. If $AO=2CO$ and $BO=2DO$; Then,

$\displaystyle \Delta AOB$ is similar to $\displaystyle \Delta COD$

  1. True

  2. False


Correct Option: B
Explanation:

Given: $AO = 2 CO$ or $\dfrac{AO}{CO} = 2$
Also given, $BO = 2 DO$ or $\dfrac{BO}{DO} = 2$
In $\triangle AOB$ and $\triangle COD$, we know 
$\angle AOB = \angle COD$
$\dfrac{AO}{CO} = \dfrac{BO}{DO}$
Thus, $\triangle AOB \sim \triangle COD$ (SAS rule)

$\angle BAC$ of triangle $ABC$ is obtuse and $AB=AC$. $P$ is a point in $BC$ such that $PC= 12$ cm. $ PQ $ and $PR$ are perpendiculars to sides $AB$ and $AC$ respectively. If $PQ= 15$ cm and $=9$ cm; find the length of $PB$.

  1. $20$

  2. $24$

  3. $36$

  4. $18$


Correct Option: A
Explanation:

Given: $AB = AC$, $PQ \perp AB$ and $PR \perp AC$
Since, $AB = AC$
$\angle ABC = \angle ACB$...(I) (Isosceles triangle property)

Now, In $\triangle PBQ$ and $\triangle PRC$
$\angle PBQ = \angle PCR$ (From I)
$\angle PQB = \angle PRC$ (Each $90^{\circ}$)
$\angle QPB = \angle RPC$ (Third angle)
Thus, $\triangle QPB \sim \triangle RPC$ (AAA rule)
Hence, $\dfrac{PQ}{PR} = \dfrac{PB}{PC}$
$\dfrac{15}{9} = \dfrac{PB}{12}$
$PB = \dfrac{15 \times 12}{9}$
$PB = 20$ cm

In standard from, the number 829030000 is written as $K\times { 10 }^{ 8 }$ where K is equal to 

  1. 82903

  2. 829.03

  3. 82.903

  4. 8.2903


Correct Option: A
Explanation:

$829030000=K \times 10^8$

Thus, $K=8.2903$
Hence, option D is correct.

The sum of the powers of the prime factors in $108 \times 192$  is

  1. $5$

  2. $7$

  3. $8$

  4. $12$


Correct Option: D
Explanation:

$\displaystyle 108=2\times 2\times  3\times 3\times 3=2^{2}\times 3^{3}$
$\displaystyle 192=2\times2\times2\times2\times2\times2\times3$
$\displaystyle =2^{6}\times 3^{1}$
$\displaystyle 108 \times 192=2^{2}\times 3^{3}\times 2^{6}\times 3^{1}$
$\displaystyle =2^{8}\times 3^{4}$
Sum of the powers = 8 + 4 = 12

The value of $\displaystyle (243)^{\frac{-2}{5}}$ is---

  1. $\displaystyle \frac{1}{9}$

  2. $\displaystyle \frac{2}{9}$

  3. 9

  4. None of these


Correct Option: A
Explanation:

$\displaystyle (243)^{-2/5} =\displaystyle(3^5)^{-2/5}$
                $\displaystyle = 3^{-2} = \frac{1}{9}$

Find the value of $\displaystyle (64)^{-2/3}$---

  1. 16

  2. $\displaystyle \frac{1}{16}$

  3. $\displaystyle -\frac{1}{16}$

  4. None of these


Correct Option: B
Explanation:

$\displaystyle (64)^{-2/3} = 4^3 \times 1^{-2/3} = 4^{-2}$
                 $\displaystyle = \frac{1}{4^2} = \frac{1}{16}$   

The value of $[(-3)^{(-2)}]^{(-3)}$ is---

  1. 243

  2. 27

  3. 729

  4. None of these


Correct Option: C
Explanation:

$[(-3)^{(-2)}]^{(-3)} = (-3)^6$
                           = 729

Charge of an electron is $0.00000000000000000016$ coulomb. This number can also be written in standard form as:

  1. $\displaystyle 1\cdot 6\times 10^{19}$

  2. $\displaystyle 1\cdot 6\times 10^{-20}$

  3. $\displaystyle 1\cdot 6\times 10^{-19}$

  4. $\displaystyle 1\cdot 6\times 10^{18}$


Correct Option: C
Explanation:

$0.0000000000000000000016=\displaystyle \frac{16}{100000000000000000000}$


=$\displaystyle \frac{1\cdot 6\times 10^{1}}{10^{20}}$

=$\displaystyle 1\cdot 6\times 10^{-19}$

The value of $(3^0 - 2^1) \times 4^2$ is---

  1. -16

  2. 32

  3. 64

  4. 0


Correct Option: A
Explanation:

$(3^0 - 2^1) \times 4^2 = (1-2) \times 16$
                                         $= -1 \times 16 = -16$