Tag: maths

Questions Related to maths

Simplify $\displaystyle (27)^{\frac{-2}{3}} \div \displaystyle (64)^{\frac{-2}{3}}$ is---

  1. $\displaystyle \frac{9}{16}$

  2. 16

  3. $\displaystyle \frac{16}{9}$

  4. 9


Correct Option: C
Explanation:

$\displaystyle \frac{(27)^{-2/3}}{ ( 64)^{-2/3}} = \frac{\displaystyle \frac{1}{9}}{ \displaystyle \frac{14}{16}} = \frac{16}{9}$

Size of a bacteria is $\displaystyle 1.5\times 10^{-7}m$. This number can also be written as:

  1. $0.00000015$

  2. $0.0000015$

  3. $0.000000015$

  4. $15000000$


Correct Option: A
Explanation:
$a\times 10^{-k} = \dfrac{a}{10^k}$

$\displaystyle 1.5 \times 10^{-7}= \dfrac{1.5}{10^7} = 0.00000015$

The usual form of $\displaystyle 6\cdot 8793\times 10^{4}$ is:

  1. $687930$

  2. $68793$

  3. $6879.3$

  4. $6879300$


Correct Option: B
Explanation:

$\displaystyle 6\cdot 8793\times 10^{4}=68,793$

Which of the following statement is false?

  1. $\displaystyle 4\cdot 59\times 10^{-3}=0.00459$

  2. $\displaystyle 7\times 10^{-5}=0.00007$

  3. $\displaystyle 1\cdot 03\times 10^{-3}=1030$

  4. $\displaystyle 8\cdot 8\times 10^{-4}=0.00088$


Correct Option: C
Explanation:

$\displaystyle 1\cdot 03\times 10^{-3}= 0\cdot 00103$
$\displaystyle \therefore $ The given statement is false

Which of the following expressions is true?

  1. $2940000=$$\displaystyle 2\cdot 94\times 10^{5}$

  2. $502000=$$\displaystyle 5\cdot 02\times 10^{5}$

  3. $3683000=$$\displaystyle 3\cdot 683\times 10^{5}$

  4. $40404000=$$\displaystyle 4\cdot 0404\times 10^{5}$


Correct Option: B
Explanation:

$\displaystyle 502000= 5\cdot 02\times 10^{5}$

Therefore, option B is correct.

When $70, 000$ is written as $7.0\times10^n$, what is the value of $n$?

  1. $1$

  2. $2$

  3. $3$

  4. $4$

  5. $5$


Correct Option: D
Explanation:

Given that $70,000$ is written as $7.0$ $\times $ ${10}^{n}$

From this, we can write
$70,000$ $=$ $7.0$ $\times$ ${10}^{n}$
$\Rightarrow {10}^{n}$ $=$ $\dfrac {70,000}{7}$
$\Rightarrow {10}^{n}$ $=$ $10,000$
$\Rightarrow {10}^{n}$ $=$ ${10}^{4}$
$\Rightarrow n$ $=$ $\log _{10}$ ${10}^{4}$
$\Rightarrow n$ $=$ $4$ $\log _{10}$ $10$
$\Rightarrow $ $=$ $4$
Therefore, the value of $n$ is $'4'$.

The standard form of $15240000$ is __________.

  1. $1.524\times 10^{7}$

  2. $1.524\times 10^{6}$

  3. $15.24\times 10^{7}$

  4. $1.524\times 10^{8}$


Correct Option: A
Explanation:

$15240000 = 1524\times 10000$

                   $= 1.524 \times 1000 \times 10000$
                   $= 1.524 \times 10^{7}$

Which of the following is equivalent to $ 7.7 \times 10^{-6}$?

  1. $0.00000077$

  2. $0.0000077$

  3. $0.000077$

  4. $0.00077$


Correct Option: B
Explanation:

$7.7 \times 10^{-6}=\dfrac{7.7}{1000000}=0.0000077$

The number $3.02 \times10^{-6}$ can be expressed in decimal form as:

  1. $0.0000302$

  2. $0.00000302$

  3. $0.000302$

  4. $0.00302$


Correct Option: B
Explanation:

$3.02 \times10^{-6}$ = $\dfrac{3.02}{1000000}$ $= 0.00000302$

The number $3\times10^{-8}$ can also be expressed as:

  1. $0.000003$

  2. $0.00003$

  3. $0.00000003$

  4. $0.0003$


Correct Option: C
Explanation:

$3\times10^{-8}$ $=$ $\dfrac{3}{100000000}$ $=$ ${0.00000003}$