Tag: maths

Questions Related to maths

When we construct a triangle similar to a given triangle as per given scale factor, we construct on the basis of ...........

  1. SSS Similarity

  2. AAA similarity

  3. Basic proportionality theorem

  4. $A$ and $C$ are correct


Correct Option: A
Explanation:

As we consider only sides, therefore, SSS similarity is used.
Option A is correct.  

Goldfish are sold at Rs.15 each. The rectangular coordinate graph showing the cost of 1 to 12 goldfish is:

  1. a straight line segment

  2. a set of horizontal parallel line segments

  3. a set of vertical parallel line segments

  4. a finite set of distinct points

  5. a straight line


Correct Option: D
Explanation:

$\angle MAB=\angle PAO\longrightarrow (1),\hspace{1mm} O\hspace{1mm} be\hspace{1mm} center\ \angle AMB=90°=\angle AOP\ (1)\Longrightarrow 90°-\angle MAB=90°-\angle PAO\ \angle MBA=\angle APO$

By AAA property,
$\triangle APO\sim \triangle ABM\ \cfrac { \bar { AP }  }{ \bar { AB }  } =\cfrac { \bar { AO }  }{ \bar { AM }  } \ \therefore \bar { AP } \cdot \bar { AM } =\bar { AO } \cdot \bar { AB } $

For $\triangle ABC$ and $\triangle PQR$, if $m\angle A=m\angle R $ and $m\angle C=m\angle Q$, then $ABC \longleftrightarrow $_________ is a similarity.

  1. $RQP$

  2. $PQR$

  3. $RPQ$

  4. $QPR$


Correct Option: C
Explanation:

For $\triangle ABC $ and $\triangle PQR$,
$m\angle A = m\angle R$
$m\angle C= m\angle Q$
$\therefore $ by AA criteria for similarity 

$ABC \longleftrightarrow RPQ $ is a similarity.

Say true or false.

If in two triangles, two angles of one triangle are respectively equal to the two angles of the other triangle, then the two triangles are similar.

  1. True

  2. False


Correct Option: A
Explanation:

If two angles of a triangle is equal to two angles of another triangle, then the third angle of both triangles will be equal.
$\therefore$By AAA Theorem of Similarity, the two triangles are similar.

In $\triangle DEF$ &$ \triangle PQR,\ m \angle R$  & _____, then both triangles are similar.

  1. $\dfrac{DE}{PQ}=\dfrac{EF}{QR}$

  2. $\dfrac{DE}{PQ}=\dfrac{DF}{PR}$

  3. $\dfrac{DE}{PR}=\dfrac{DF}{RQ}$

  4. $\dfrac{DE}{QR}=\dfrac{EF}{PR}$


Correct Option: A

$ABC$ and $BDE$ are two equilateral triangles such that $D$ is the mid point of $BC$. Ratio of the areas of triangle $ABC$ and $BDE$ is

  1. $2:1$

  2. $1:2$

  3. $4:1$

  4. $1:4$


Correct Option: C
Explanation:

$\triangle ABC \sim \triangle BDE$                            (both are equilateral triangles)


$\Rightarrow \triangle ABC : \triangle BDE = AB^2 : BD^2$

                                          $= AB^2 :  (\dfrac{1}{2} BC)^{2} $
                                          
                                          $ = AB^2 : \dfrac{1}{4} BC^2 $

                                          $= 4 : 1$           $(\because AB = BC)$
Hence proof.

In $ \triangle ABC, $ If $\angle ADE = \angle B,$ then  $ \Delta ADE ~ \Delta ABC$ are similar

  1. True

  2. False


Correct Option: A

In $\triangle A B C$, D is a point on AB such that $A D = \frac { 1 } { 4 } A B$ and E is a point on AC such that $A E = \frac { 1 } { 4 } A C$ then $D E = \frac { 1 } { 8 } B C$

  1. True

  2. False


Correct Option: B

State true or false:

In a trapezium ABCD, side AB is parallel to side DC; and the diagonals AC and BD intersect each other at point P, then
$\displaystyle \Delta APB$ is similar to $\displaystyle \Delta CPD.$

  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$ APB and $\triangle$ CPD,
$\angle APB = \angle CPD$ (Vertically opposite angles)
$\angle ABP = \angle CDP$ (Alternate angles of parallel sides AB and CD)
$\angle BAP = \angle DCP$ (Alternate angles of parallel sides AB and CD)
Hence, $\triangle APB \sim \triangle CPD$ (AAA rule)

State true or false:

In parallelogram $ ABCD $. $ E $ is the mid-point of $ AB $ and $ AP $ is parallel to $ EC $ which meets $ DC $ at point $ O $ and $ BC $ produced at $ P $. Hence 
$ O $ is mid-point of $ AP $.

  1. True

  2. False


Correct Option: A
Explanation:

In $\triangle$s, APB and ECB,

$\angle ABP = \angle EBC $ (Common angle)

$\angle PAB = \angle CEB$ (Corresponding angles of parallel lines)

$\angle APB = \angle ECB $ (Third angle of the triangle)

Thus $\triangle APB \sim \triangle ECB$ (AAA rule)

Hence, $\dfrac{AB}{EB} = \dfrac{BP}{BC}$ (Corresponding sides of similar triangles)

$2 = \dfrac{BP}{BC}$

$BP = 2 BC$

Now, in $\triangle$s $OPC$ and $APB,$

$\angle OPC = \angle APB$ (Common angle)

$\angle POC = \angle PAB$ (Corresponding angles of parallel lines)

$\angle PCO = \angle PBA$ (Third angle of a triangle)

$\triangle OPC \sim \triangle APB$ (AAA rule)

hence, $\dfrac{PC}{BP} = \dfrac{OP}{AP}$  (Corresponding sides)

$\dfrac{1}{2} = \dfrac{OP}{AP}$ 

$OP = \dfrac{1}{2} AP$

hence, $O$ is the midpoint of $AP$.