Tag: maths

Questions Related to maths

If the vector $a=2i+3j+6k$ and $b$ are collinear and $|b|=21$, then $b=$

  1. $\pm(2i+3j+6k)$

  2. $\pm3(2i+3j+6k)$

  3. $(2i+j+k)$

  4. $\pm21(2i+3j+6k)$


Correct Option: A

 The area of the ratio of two similar triangles is equal to the ratio of the square of their corresponding sides.

  1. True

  2. False


Correct Option: A

The areas of two similar triangles are $49 \ {cm}^{2}$ and $64 \ {cm}^{2}$ respectively. The ratio of their corresponding sides is:

  1. $49:64$

  2. $7:8$

  3. $64:49$

  4. none of these


Correct Option: B
Explanation:

Areas of two similar triangles are $49 $ cm $^2$ and $64$ cm $^2.$
For similar triangles the ratio of areas is equal to the ratio of square of corresponding sides.
Hence, $\dfrac{A _1}{A _2} = \dfrac{(s _1)^2}{(s _2)^2}$
$\Longrightarrow \dfrac{49}{64} = \dfrac{(s _1)^2}{(s _2)^2}$
$\Longrightarrow\dfrac{s _1}{s _2} = \dfrac{7}{8}$

$\Delta ABC \sim  \Delta PQR$ and $\displaystyle\frac{A( \Delta ABC)}{A( \Delta PQR)}=\dfrac{16}{9}$. If $PQ=18$ cm and $BC=12$ cm, then $AB$ and $QR$ are respectively:

  1. $9$ cm, $24$ cm

  2. $24$ cm, $9$ cm

  3. $32$ cm, $6.75$ cm

  4. $13.5$ cm, $16$ cm


Correct Option: B
Explanation:

$\displaystyle\frac{16}{9}=\left[\frac{AB}{PQ}\right]^2=\left[\frac{BC}{QR}\right]^2$

$\displaystyle\Rightarrow \frac{16}{9}=\left[\frac{AB}{18}\right]^2$ and $\displaystyle\frac{16}{9}=\left[\frac{12}{QR}\right]^2$

$\displaystyle \Rightarrow \frac{4}{3}=\frac{AB}{18}$ and $\displaystyle \frac{4}{3}=\frac{12}{QR}$

$\Rightarrow AB=24$ cm, $QR=9$ cm.

Two isosceles triangles have equal vertical angles and their areas are in the ratio $16:25$. Find the ratio of their corresponding heights.

  1. $4:5$

  2. $25:16$

  3. $5:4$

  4. $16:25$


Correct Option: A
Explanation:

$\triangle ABC$ and $\triangle DEF$ be the given triangles in which $AB=AC, DE=DF$, $\angle A=\angle D$
and $\cfrac{Area\quad (\triangle ABC)}{Area\quad (\triangle DEF)}=\cfrac{16}{25}$
Draw $AL\bot  BC$ and $DM\bot  EF$
Now, $\cfrac{AB}{BC}=1$ and $\cfrac{DE}{DF}=1$  ($\because \quad AB=AC;\quad DE=DF$)
$\Rightarrow \cfrac{AB}{AC}=\cfrac{DE}{DF}$,
$\therefore$ $\ln \triangle ABC$ and $\triangle DEF$, we have
$\cfrac{AB}{DE}=\cfrac{AC}{DF}$ and $\angle A=\angle D$
$\Rightarrow$ $\triangle ABC\sim \triangle DEF$ [By SAS similarity axiom)
But, the ratio of the areas of two similar $\triangle s$ is the same as the ratio of the squares of their corresponding heights.
$\cfrac{Area\quad (\triangle ABC)}{Area\quad (\triangle DEF)}=\cfrac {{AL}^{2}}{{DM}^{2}}$
$\Rightarrow$ $\cfrac{16}{25}={ \left( \cfrac {AL}{DM}  \right)  }^{ 2 }$
$\Rightarrow$ $\cfrac{4}{5}$
$\therefore$ $AL:DM=4:5$, i.e., the ratio of their corresponding heights$=4:5$

If $\triangle ABC\sim \triangle  PQR,$  $ \cfrac{ar(ABC)}{ar(PQR)}=\cfrac{9}{4}$,  $AB=18$ $cm$ and $BC=15$ $cm$, then $QR$ is equal to:

  1. $10$ $cm$

  2. $12$ $cm$

  3. $\cfrac{20}{3}$ $cm$

  4. $8$ $cm$


Correct Option: A
Explanation:

Given, $\triangle ABC \sim \triangle PQR$,

Then, $\dfrac{ar(ABC)}{ar(PQR)} = \dfrac{AB^2}{PQ^2} = \dfrac{BC^2}{QR^2} = \dfrac{AC^2}{PR^2}$
$\dfrac{9}{4} = \dfrac{BC^2}{QR^2}$

$\dfrac{9}{4} = \dfrac{15^2}{QR^2}$
$QR^2 = \dfrac{4 \times 225}{9}$
$QR^2 = 100$
$QR = 10 \ cm$

Let $\triangle ABC\sim \triangle DEF$ and their areas be, respectively $64\ {cm}^{2}$ and $121\ {cm}^{2}$. If $EF=15.4\ cm$, find $BC$.

  1. $11.2\ cm$

  2. $11.6\ cm$

  3. $11.4\ cm$

  4. $10.8\ cm$


Correct Option: A
Explanation:

$\triangle ABC\sim \triangle DEF\quad $ (Given)
$\Rightarrow \cfrac { ar(ABC) }{ ar(DEF) } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } $ (ratio of Areas of Similar triangles are equal to ratio of squares of corresponding sides)
$\Rightarrow \quad \cfrac { 64 }{ 121 } =\cfrac { { BC }^{ 2 } }{ { EF }^{ 2 } } \quad { \left{ \cfrac { BC }{ EF }  \right}  }^{ 2 }={ \left{ \cfrac { 8 }{ 11 }  \right}  }^{ 2 }$
$\Rightarrow \quad \cfrac { BC }{ EF } =\cfrac { 8 }{ 11 } \quad \Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times EF$
$\Rightarrow \quad BC=\cfrac { 8 }{ 11 } \times 15.4cm=11.2cm$

If $\triangle ABC$ is similar to $\triangle DEF$ such that $BC=3$ cm, $EF=4$ cm and area of $\triangle ABC=54: \text{cm}^{2}.$ Find the area of $\triangle DEF.$ (in cm$^2$)

  1. $54$

  2. $36$

  3. $72$

  4. $96$


Correct Option: D
Explanation:

Since the ratio of the areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides,
Therefore, $\displaystyle \frac{ar\left ( \triangle ABC \right )}{ar\left ( \triangle DEF \right )}=\frac{BC^{2}}{EF^{2}}$ 

$\Rightarrow $ $\displaystyle \frac{54}{ar\left ( \triangle DEF \right )}=\frac{3^{2}}{4^{2}}$ 
Thus $\displaystyle ar\left ( \triangle DEF \right )=\frac{54\times 16}{9}=96: \text{cm}^{2}$

The areas of two similar triangles are $121$ cm$^{2}$ and $64$ cm$^{2}$, respectively. If the median of the first triangle is $12.1$ cm, then the corresponding median of the other is:

  1. $6.4$ cm

  2. $10$ cm

  3. $8.8$ cm

  4. $3.2$ cm


Correct Option: C
Explanation:

The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding medians. Therefore,
$\displaystyle \frac{121}{64}=\frac{\left ( 12.1 \right )^{2}}{x^{2}},$ where $x$ is the median of the other $\triangle .$
$\Rightarrow $ $\displaystyle x^{2}=\frac{\left ( 12.1 \right )^{2}\times 64}{121}\Rightarrow x=\sqrt{\frac{121}{100}\times 64}$
   $\displaystyle =\frac{11}{10}\times 8=8.8$ cm.

In $\Delta ABC$, a line is drawn parallel to $BC$ to meet sides $AB$ and $AC$ in $D$ and $E$ respectively. If the area of the $\Delta ADE$ is $\dfrac 19$ times area of the $\Delta ABC$, then the value of $\dfrac {AD}{AB}$ is equal to:

  1. $\dfrac 13$

  2. $\dfrac 14$

  3. $\dfrac 15$

  4. $\dfrac 16$


Correct Option: A
Explanation:

By theorem on ratio of areas of similar triangles, we get

$\dfrac {A(\triangle ADE)}{A(\triangle ABC)} = \left(\dfrac {AD}{DB}\right)^2$

$\therefore \dfrac 19 = \dfrac {AD^2}{DB^2}$

$\therefore \dfrac {AD}{DB}= \dfrac 13$.