Tag: relations between the areas of triangles

Questions Related to relations between the areas of triangles

If $\triangle ABC\sim \triangle DEF$ and $AB:DE=3:4$, then the ratio of area of triangles taken in order is 

  1. $\dfrac{9}{16}$

  2. $\dfrac{16}{9}$

  3. $\dfrac{15}{9}$

  4. $\dfrac{9}{15}$


Correct Option: A
Explanation:
 In similar triangle,
         Rratio of areas of triangle = square of ratio of corresponding sides
       Ratio of areas of triangle=${\dfrac {3^2}{4^2}}$
                                                 =$\dfrac{9}{16}$
In $\Delta A B C$, $P,Q,R$ are points on $\overline { B C } , \overline { C A } , \overline { A B }$ respectively, dividing them in the ratio $1 : 4,3 : 2$ and $3 : 7$. The points $S$ divides $AB$ in the ratio $1 : 3$.
Then $\frac { | \overline { A P } + \overline { B Q } + \overline { C R } | } { | \overline { C S } | } =$
  1. $\frac { 1 } { 5 }$

  2. $\frac { 2 } { 5 }$

  3. $\frac { 5 } { 2 }$

  4. $\frac { 7 } { 10 }$


Correct Option: A

The areas of two similar triangles are $16cm^2$ and $36cm^2$ respectively. If the altitude of the first triangle is $3cm$, then the corresponding altitude of the other triangle is:

  1. $4cm$

  2. $6.5cm$

  3. $4.5cm$

  4. $6cm$


Correct Option: C
Explanation:
Let ${A} _{1}$ and ${A} _{2}$ be the areas of the similar triangles.

$\Rightarrow \dfrac{{A} _{1}}{{A} _{2}}=\dfrac{{s} _{1}^{2}}{{s} _{2}^{2}}$

$\Rightarrow \dfrac{16}{36}=\dfrac{{\left(3\right)}^{2}}{{s} _{2}^{2}}$ given $({s} _{1}=3 \ cm )$

$\Rightarrow {s} _{2}^{2}=\dfrac{36\times 9}{16}$

$\Rightarrow {s} _{2}=\dfrac{6\times 3}{4}=4.5 \ cm$  

State true or false:


The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.

  1. True

  2. False


Correct Option: A
Explanation:

To prove: Ratio of the areas of two triangles of the same bases is equal to the ratio of their heights.
Proof:
Let us take triangle ${ T } _{ 1 }$ with height  ${ h } _{ 1 }$ and base ${ b } _{ 1 }$ and Triangle ${ T } _{ 2 }$ with height  ${ h } _{ 2 }$ and base ${ b } _{ 2 }$.

Area of Triangle ${ T } _{ 1 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 }$

Area of Triangle ${ T } _{ 2 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 }$

Ratio of area of two triangles,
$\dfrac { \text{Area of triangle} \ { T } _{ 1 } }{\text{ Area of triangle} \ { T } _{ 2 } } =\frac { \frac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 } }{ \frac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 } }$      
$ =\dfrac { h _{ 1 } }{ { h } _{ 2 } } $                                      (Base of two triangles are equal. So, $ { b } _{ 1 } = { b } _{ 2 }$) 
Proved.              

State true or false:

The ratio of the areas of two triangles of the same height is equal to the ratio of their bases.

  1. True

  2. False


Correct Option: A
Explanation:

To prove: Ratio of the areas of two triangles of the same height is equal to the ratio of their bases.
Proof:
Let us take triangle ${ T } _{ 1 }$ with height  ${ h } _{ 1 }$ and base ${ b } _{ 1 }$ and Triangle ${ T } _{ 2 }$ with height  ${ h } _{ 2 }$ and base ${ b } _{ 2 }$.

Area of Triangle ${ T } _{ 1 }$ $=\dfrac { 1 }{ 2 } \times\ \text{ base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 }$

Area of Triangle ${ T } _{ 2 }$ $=\dfrac { 1 }{ 2 } \times\ \text{ base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 }$

Ratio of area of two triangles,
$\dfrac { \text{Area of triangle} \  { T } _{ 1 } }{\text{ Area of triangle} \  { T } _{ 2 } } =\dfrac { \frac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 } }{ \frac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 } } \ $
$ =\dfrac { { b } _{ 1 } }{ { b } _{ 2 } } $                      (Height of two triangles are equal So,$ { h } _{ 1 } = { h } _{ 2 }$) 
Hence, proved.

The areas of two similar triangles are $12$ ${cm}^{2}$ and $48$ ${cm}^{2}$. If the height of the smaller one is $2.1$ $cm$, then the corresponding height of the bigger one is:

  1. $4.41$ $cm$

  2. $8.4$ $cm$

  3. $4.2$ $cm$

  4. $0.525$ $cm$


Correct Option: C
Explanation:

Areas of two similar triangles are $12 cm^2$ and $48 cm^2$
For similar triangles the ratio of areas is equal to the ratio of square of corresponding heights
Hence, $\dfrac{A _1}{A _2} = \dfrac{(h _1)^2}{(h _2)^2}$

$\dfrac{12}{48} = \dfrac{(2.1)^2}{(h _2)^2}$

$(h _2)^2= 4 \times (2.1)^2$

$h _2 = 2 \times 2.1$

$h _2 = 4.2 cm$

A vertical stick of length $6m$ casts a shadow $4m$ long on the ground and at the same time a tower casts a shadow $28m$ long. Find the height of the tower.

  1. $42m$

  2. $48m$

  3. $62m$

  4. $52m$


Correct Option: A
Explanation:

The length of stick corresponds to the length of tower and shadow of stick corresponds to the shadow of tower.
Thus, $\dfrac{Length\ Stick}{Shadow\ Stick} = \dfrac{Length\ Tower}{Shadow\ Tower}$


$\dfrac{6}{4} = \dfrac{Length\ Tower}{28}$
$Length\ Tower = \dfrac{6 \times 28}{4}$
$Length\ Tower = 42$ m

The corresponding sides of two similar triangles are in the ratio $2$ to $3$. If the area of the smaller triangle is $12$ the area of the larger is

  1. $24$

  2. $27$

  3. $18$

  4. $8$


Correct Option: B
Explanation:

Area of similar triangles are in the ratio of square of the corresponding sides.
Hence, $\dfrac{\text{Area of smaller triangle}}{\text{Area of larger triangle}} = \frac{2^2}{3^2}$
$\Rightarrow \dfrac{12}{\text{Area of larger triangle}} = \dfrac{4}{9}$
$\text{Area of larger triangle}  = 27$

If  in $\triangle ABC$  and $\triangle EDA,$ $\displaystyle BC\bot AB,AE\bot AB$ and $\displaystyle DE\bot AC$ then $\displaystyle DE.BC=AD.AB$ 

  1. True

  2. False


Correct Option: A
Explanation:

In $\displaystyle \Delta ABC$ and $\displaystyle \Delta EDA$,
We have
$\displaystyle \angle ABC=\angle ADE$ [Each equal to $\displaystyle { 90 }^{ o }$]
$\displaystyle \angle ACB=\angle EAD$ [Alternate angles]
$\displaystyle \therefore $ By AA Similarity
$\displaystyle \Delta ABC\sim \Delta EDA$
$\displaystyle \Rightarrow \frac { BC }{ AB } =\frac { AD }{ DE } $
$\displaystyle \Rightarrow DE.BC=AD.AB$.
Hence proved.

If the ratio of the corresponding sides of two similar triangles is 2 : 3, then the ratio of their corresponding altitude is :

  1. 3 : 2

  2. 16 : 81

  3. 4 : 9

  4. 2 : 3


Correct Option: D
Explanation:

In two similar triangles, if the corresponding sides are in a particular ratio, then altitudes will also be in the same ratio.
Hence the ratio of the altitudes will be 2 : 3.