Tag: maths

Questions Related to maths

The sum to infinity of the series $1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ......,is$

  1. $3$

  2. $4$

  3. $6$

  4. $2$


Correct Option: A
Explanation:
Let $S$=$1 + \cfrac{2}{3} + \cfrac{6}{{{3^2}}} + \cfrac{{10}}{{{3^3}}} + ......$

$\cfrac{S}{3} = \cfrac{1}{3} + \cfrac{2}{{{3^2}}} + \cfrac{6}{{{3^3}}} + ....$

$S - \cfrac{S}{3} = 1 + \cfrac{1}{3} + \cfrac{4}{{{3^2}}} + ....$

$\cfrac{{2S}}{3} = \cfrac{{\cfrac{4}{3} }}{{1 - \cfrac{1}{3}}}$

$ = \dfrac{\cfrac{4}{3}} { \cfrac{2}{3}} = \cfrac{4}{2} = 2$

If $x = 1\, + a + {a^2} + ......\infty $, $y = 1\, + b + {b^2}\,\, + ......\infty $ where $\left| a \right| < 1$ and $\left| b \right| < 1$, then $\left( {1 + ab + {a^2}{b^2} + ........\infty } \right) = ?$

  1. $\frac{xy}{x+y}$

  2. $\frac{x+y}{xy}$

  3. $\frac{xy}{x+y+1}$

  4. $\frac{xy}{x+y-1}$


Correct Option: D

Value of $y = {\left( {0.64} \right)^{{{\log } _{0.25}}\left( {\cfrac{1}{3} + \cfrac{1}{{{3^2}}} + \cfrac{1}{{{3^3}}}....upto   \infty } \right)}}$ is :

  1. $0.9$

  2. $0.8$

  3. $0.6$

  4. $0.25$


Correct Option: B
Explanation:
$y= (0.64)^{log _{0.25} \left(\dfrac{1}{3}+ \dfrac{1}{3^{2}}+ \dfrac{1}{3^{3}}+..... \right)}$
$=(0.64)^{\log _{0.25}^{\left( \dfrac{\dfrac{1}{3}}{1-1/3} \right)}}$
$=(0.64)^{\log _{0.25} } \left( \dfrac{1}{2} \right)$
$= (0.64)^{\log 0.5} _{0.25}$
$(0.64)^{0.5}= (0.64)^{1/2}= \sqrt{0.64}= 0.8$

If $y=x-x^2+x^3-x^4+....\infty$, then value of x will be?

  1. $y+\dfrac{1}{y}$

  2. $\dfrac{y}{1+y}$

  3. $y-\dfrac{1}{y}$

  4. $\dfrac{y}{1-y}$


Correct Option: D

If the sum of the series $2+\frac {\displaystyle 5}{\displaystyle x}+\frac {\displaystyle 25}{\displaystyle x^2}+\frac {\displaystyle 125}{\displaystyle x^3}+....$ is finite, then-

  1. $\mid x\mid > 5$

  2. -5 < x < 5

  3. $\mid x\mid < 5/2$

  4. $\mid x\mid > 5/2$


Correct Option: A
Explanation:

We can rewrite the series as
$1+1+\dfrac {5}{x}+(\dfrac {5}{x})^2+(\dfrac {5}{x})^3+.....$
We can sum up this series if $\mid 5/x\mid < 1$
$\Leftrightarrow \mid x\mid > 5$

If $x=1+a+a^2+...\infty$ where $|a| <1 $ and $y=1+b+b^2+...\infty$, where $|b| < 1$, then $1+ab+a^2b^2+...\infty =\dfrac{xy}{x+y-1}$.

  1. True

  2. False


Correct Option: A

${x}^{\cfrac{1}{2}}.{x}^{\cfrac{1}{4}}.{x}^{\cfrac{1}{8}}.{x}^{\cfrac{1}{16}}.....$ to $\infty$

  1. $0$

  2. $1$

  3. $x$

  4. $\infty$


Correct Option: C
Explanation:

$x^{1/2}.x^{1/4}......\infty =x^{\left ( \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16} \right )}$ 


$=x\left ( 1/2+1/2^{2}+1/2^{3}+1/2^{4}+.......\infty  \right )$

$=x^{\frac{1}{2}\left ( \frac{1-(1/2)\infty }{1-1/2} \right )}$ 

$=x^{1}$ 

$=x$

The solution of the equation $(8)^{1+|cos x|+|cos x|^2+|cos x|^3+...)}=4^3$ in the interval $(-\pi, \pi)$ are.

  1. $\pm \dfrac {\pi }{3}, \pm \dfrac {\pi }{6}$

  2. $\pm \dfrac {\pi }{3}, \pm {\pi }$

  3. $\pm \dfrac {\pi }{3}, \pm \dfrac {2\pi }{3}$

  4. none of these


Correct Option: C
Explanation:

 $(8)^{1+|cos x|+|cos x|^2+|cos x|^3+...)}=4^3$
$\Rightarrow (8)^{\dfrac{1}{1-|\cos x|}}=4^3=64=8^2$, since $|\cos x| < 1$ in $(-\pi, \pi)$
$\Rightarrow {\dfrac{1}{1-|\cos x|}}=2$
$\Rightarrow |\cos x|=\cfrac{1}{2}$
The solution in the given interval is,
$x=\pm \cfrac{\pi}{3}, \pm \cfrac{2\pi}{3}$
Hence, option 'C' is correct.

The sum of $7+1+.......$

  1. $\dfrac{49}{6}$

  2. $\dfrac{49}{8}$

  3. $\dfrac{49}{14}$

  4. None of these


Correct Option: A
Explanation:

$7+1+\dfrac 17 ...$

Forms GP  with $a=7\r=\dfrac 17 $
So $S _{\infty}=\dfrac{7}{1-\dfrac 17}\\dfrac{49}{6}$

The series $\dfrac{2x}{x+3}+(\dfrac{2x}{x+3})^{2}+(\dfrac{2x}{x+3})^{3}+........\infty$ will have a definite sum when  

  1. $x<3$

  2. $x>3$

  3. $x=0$

  4. $x=-3$


Correct Option: A
Explanation:
$\dfrac{2x}{x+3}+\left(\dfrac{2x}{x+3}\right)^{2}+\left(\dfrac{2x}{x+3}\right)^{3}.......\infty $
$\therefore a=\dfrac{2x}{x+3}$   $r=\dfrac{2x}{x+3}$
$\therefore s=\dfrac{a}{1-r}=\dfrac{\dfrac{2x}{x+3}}{1-\dfrac{2x}{x+3}}$
$=\dfrac{2x}{x+3-2x}=\dfrac{2x}{3-x}$
Now, to have definite sum
$r < 1$
$\therefore \dfrac{2x}{x+3} < 1$
$\therefore 2x < x+3$
$\therefore x < 3$