Tag: maths

Questions Related to maths

If the sides of two similar triangles are in the ratio $2 : 3$, then their areas are in the ratio:

  1. $9 : 4$

  2. $4 : 9$

  3. $2 : 3$

  4. $3 : 2$


Correct Option: B
Explanation:

Given, sides of two similar triangles are in the ratio $2:3$

Thus, the ratio of their areas are $($ side $)^2$
$=\left (\dfrac {2}{3}\right)^2=\dfrac {4}{9}$ 
Therefore, the areas are in the raatio $4:9$.

In $\Delta ABC$, $D$ is a point on $BC$ such that $3BD = BC$. If each side of the triangle is $12 cm$, then $AD$ equals:

  1. $4\sqrt { 5 } cm$

  2. $4\sqrt { 6 } cm$

  3. $4\sqrt { 7 } cm$

  4. $4\sqrt { 11 } cm$


Correct Option: C
Explanation:

Given $\triangle ABC$ with $D$ a point on $BC$ such that $3BD=BC$

$\therefore$ $BD=\dfrac{BC}{3}=4cm$
$AD\  \bot\ BC$
Let's take a point $E$ on $BC$ which makes a right angle triangle $ADE$ and $AEB$ at $E$ such that $BE=\dfrac{1}{2}BC=6cm$
$\therefore\ DE=BE-BD=2cm$.
$\therefore\ AE^2=AB^2-BE^2=144-36=108$
$\because\ AED=90^{o}$
$\therefore\ AD^2=AE^2+DE^2=108+4=112$
$\therefore\ AD=4\sqrt{7}cm$.

In $\Delta ABC \sim  \Delta PQR$, $M$ is the midpoint of $BC$ and $N$ is the midpoint of $QR$. If the area of $\Delta ABC =$ $100$ sq. cm and the area of $\Delta PQR =$ $144$ sq. cm. If $AM = 4$ cm, then $PN$ is:

  1. $4.8$ cm

  2. $12$ cm

  3. $4$ cm

  4. $5.6$ cm


Correct Option: A
Explanation:

$\dfrac { ar(\triangle ABC) }{ ar(\triangle PQR) } =\dfrac { 100 }{ 144 } $

If triangles are similar then ratio of their areas is equal to ratio of square of their corresponding sides
$\dfrac { AB^{ 2 } }{ PQ^{ 2 } } =\dfrac { 100 }{ 144 } \ \dfrac { AB }{ PQ } =\dfrac { 10 }{ 12 } $
$AM$ and $PN$ are medians
Therefore, $ \dfrac { AM }{ PN } =\dfrac { AB }{ PQ } $
$\Rightarrow  \dfrac { 4 }{ PN } =\dfrac { 10 }{ 12 } \ \Rightarrow PM=4.8$

D and E are the points on the sides AB and AC respectively of triangle ABC such that $ DE||BC$. If area of $ \triangle DBC =15 cm^2$, then area of $\triangle EBC $ is:

  1. $30cm^{2}$

  2. $7.5cm^{2}$

  3. $15cm^{2}$

  4. $20cm^{2}$


Correct Option: C
Explanation:

Given, $DE||BC$

Therefore, the altitudes of $\triangle EBC$ and $\triangle DBC$ are equal.
Also, they have a common base $BC$.
Thus, $ \text{Ar}(\triangle EBC)=\text{Ar}(\triangle DBC)$
$\Rightarrow \text{Ar}(\triangle EBC)=15 \ \ \text{cm}^2$

Through a point $P$ inside the triangle $ABC$ a line is drawn parallel to the base $AB$, dividing the triangle into two equal area. If the altitude to $AB$ has a length of $1$, then the distance from $P$ to $AB$ is

  1. $\dfrac {1}{2}$

  2. $\dfrac {1}{4}$

  3. $2 - \sqrt {2}$

  4. $\dfrac {2 - \sqrt {2}}{2}$

  5. $\dfrac {2 + \sqrt {2}}{8}$


Correct Option: D
Explanation:

Let $x$ be the distance from $P$ to $AB$. By similar triangles.
$\dfrac {1}{2} = \dfrac {(1 - x)^{2}}{1^{2}}; \therefore 1 - x = \pm \dfrac {1}{\sqrt {2}}; \therefore x = \dfrac {2 - \sqrt {2}}{2}$
(negative sq. root rejected).

Triangles ABC and DEF are similar. If their areas are 64 $cm^2$ and 49 $cm^2$ and if AB is 7 cm, then find the value of DE.

  1. 8 cm

  2. $\dfrac{49}{8}$ cm

  3. $\dfrac{8}{49}$ cm

  4. $\dfrac{64}{7}$cm


Correct Option: B
Explanation:

$\Delta ABC \Delta DEF$
$\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}$.
We know that,
$\dfrac{Area of \Delta  ABC}{ Area of \Delta  DEF} = $ $\Rightarrow \dfrac{64}{49} = \left ( \dfrac{7}{DE} \right )^2$
$\Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \frac{7}{DE} \right )^2 \Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \dfrac{7}{DE} \right )^2 = \dfrac{49}{8}$cm 

If $\triangle ABC\sim \triangle QRP,\dfrac{Ar(ABC)}{Ar(QRP)}=\dfrac{9}{4}$,$AB=18\ cm$ and $BC=15\ cm$; then $PR$ is equal to:

  1. $10\ cm$

  2. $12\ cm$

  3. $20\ cm$

  4. $8\ cm$


Correct Option: A
Explanation:

Given $ \triangle  ABC \sim  \triangle  QRP $
Therefore, $ \frac { Area\triangle ABC\quad  }{ Area\triangle QRP\quad }=\frac { { BC }^{ 2 } }{ { PR }^{ 2 } }  $
or $ \frac { 9 }{ 4 }  = \frac { { 15 }^{ 2 } }{ { PR }^{ 2 } }  $
or $ { PR }^{ 2 }\quad =\quad \frac { { 15 }^{ 2 }\quad \times \quad 4 }{ 9 }  $ cm.
Therefore, $ { PR }=\frac { { 15 }\times \quad 2 }{ 3 }  = $ 10 cm.

Which among the following is/are correct?
(I) If the altitudes of two similar triangles are in the ratio $2:1$, then the ratio of their areas is $4 : 1$.
(II) $PQ \parallel BC$ and $AP : PB=1:2$. Then, $\dfrac{A(\triangle APQ)}{A(\triangle ABC)}=\dfrac{1}{4}$

  1. $(I)$

  2. $(II)$

  3. Both $(I)$ and $(II)$

  4. None of the above


Correct Option: A
Explanation:

Option A: This statement is correct. The ratio of the altitudes of the similar triangles  is  $2:1$

Ratio of the areas of the similar triangles $=$ Square of the ratio of  the  altitudes.

$\therefore$ Ratio  of  the  areas $ =  { \left( \dfrac { 2 }{ 1 }  \right)  }^{ 2 }=  4:1$


Option B: If  $PQ\parallel BC$,  then $\triangle APQ \sim \triangle ABC$ by AA test of similarity.

Hence, $\dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac { AP^2 }{ AB^2 }$

If $AP = x$ and $BP = 2x$, then $AB = 3x$.

$\therefore \dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac 19$

So, the given statement is false

Two triangles ABC and PQR  are similar, if $BC : CA : AB = $1: 2 : 3, then $\dfrac{QR}{PR}$ is

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{{\sqrt{2}}}$

  4. $\dfrac{2}{3}$


Correct Option: B
Explanation:

Two triangle ABC and PQR are similar then,
$AB: BC:CA :: PQ: QR: PR$
Given $BC: CA = 1:2$ 
Hence, $QR : PR = BC : CA = 1:2$

Let $\displaystyle \Delta XYZ$ be right angle triangle with right angle at Z. Let $\displaystyle A _{X}$ denotes the area of the circle with diameter YZ. Let $\displaystyle A _{Y}$ denote the area of the circle with diameter XZ and let $\displaystyle A _{Z}$ denotes the area of the circle diameter XY. Which of the following relations is true?

  1. $\displaystyle A _{Z}=A _{X}+A _{Y}$

  2. $\displaystyle A _{Z}=A^{2} _{X}+A^{2} _{Y}$

  3. $\displaystyle A^{2} _{Z}=A^{2} _{X}+A^{2} _{Y}$

  4. $\displaystyle A^{2} _{Z}=A^{2} _{X}-A^{2} _{Y}$


Correct Option: A
Explanation:

In $\triangle XYZ$, using Pythagoras theorem,
$XY^2 = XZ^2 + YZ^2$
$\pi XY^2 = \pi XZ^2 + \pi YZ^2$ (Multiply by $\pi$)
$A _z = A _x + A _y$