Tag: maths

Questions Related to maths

State true or false
Square numbers can only have even number of zeros at the end.

  1. True

  2. False


Correct Option: A
Explanation:

$If\quad a\quad number\quad has\quad 0\quad in\quad the\quad unit’s\quad place,then\quad its\quad square\quad end\quad with\quad two\quad 0's.$

The square root of sum of the digits in the square of $121$ is 

  1. $4$

  2. $3$

  3. $6$

  4. $9$


Correct Option: A
Explanation:
The square root of sum of digits in the square of 121 

$ Sol^{n} $ square of $121 = 14641 $

sum of digits $ \Rightarrow 1+4+6+4+1 = 16 $

and square root of 16; 
$ \sqrt{16} = 4 $

$10^8$ is expanded by writing ............ number of zeros after 1

  1. 8

  2. 0

  3. 10

  4. None of these


Correct Option: A
Explanation:

8 zeros after 1 for $10^8$

A decimal number has 16 decimal places The number of decimal places in the square root of this number will be

  1. 2

  2. 4

  3. 8

  4. 16


Correct Option: C
Explanation:

The square root will have half the number of decimal places as the number it self has.
Hence square root of $16$ decimal places has $8$ decimal places.

For e.g. the square root of $0.0000000000000016$ will be $0.00000004$

If $\triangle ABC\sim \triangle DEF$ and $AB:DE=3:4$, then the ratio of area of triangles taken in order is 

  1. $\dfrac{9}{16}$

  2. $\dfrac{16}{9}$

  3. $\dfrac{15}{9}$

  4. $\dfrac{9}{15}$


Correct Option: A
Explanation:
 In similar triangle,
         Rratio of areas of triangle = square of ratio of corresponding sides
       Ratio of areas of triangle=${\dfrac {3^2}{4^2}}$
                                                 =$\dfrac{9}{16}$
In $\Delta A B C$, $P,Q,R$ are points on $\overline { B C } , \overline { C A } , \overline { A B }$ respectively, dividing them in the ratio $1 : 4,3 : 2$ and $3 : 7$. The points $S$ divides $AB$ in the ratio $1 : 3$.
Then $\frac { | \overline { A P } + \overline { B Q } + \overline { C R } | } { | \overline { C S } | } =$
  1. $\frac { 1 } { 5 }$

  2. $\frac { 2 } { 5 }$

  3. $\frac { 5 } { 2 }$

  4. $\frac { 7 } { 10 }$


Correct Option: A

The areas of two similar triangles are $16cm^2$ and $36cm^2$ respectively. If the altitude of the first triangle is $3cm$, then the corresponding altitude of the other triangle is:

  1. $4cm$

  2. $6.5cm$

  3. $4.5cm$

  4. $6cm$


Correct Option: C
Explanation:
Let ${A} _{1}$ and ${A} _{2}$ be the areas of the similar triangles.

$\Rightarrow \dfrac{{A} _{1}}{{A} _{2}}=\dfrac{{s} _{1}^{2}}{{s} _{2}^{2}}$

$\Rightarrow \dfrac{16}{36}=\dfrac{{\left(3\right)}^{2}}{{s} _{2}^{2}}$ given $({s} _{1}=3 \ cm )$

$\Rightarrow {s} _{2}^{2}=\dfrac{36\times 9}{16}$

$\Rightarrow {s} _{2}=\dfrac{6\times 3}{4}=4.5 \ cm$  

State true or false:


The ratio of the areas of two triangles on the same base is equal to the ratio of their heights.

  1. True

  2. False


Correct Option: A
Explanation:

To prove: Ratio of the areas of two triangles of the same bases is equal to the ratio of their heights.
Proof:
Let us take triangle ${ T } _{ 1 }$ with height  ${ h } _{ 1 }$ and base ${ b } _{ 1 }$ and Triangle ${ T } _{ 2 }$ with height  ${ h } _{ 2 }$ and base ${ b } _{ 2 }$.

Area of Triangle ${ T } _{ 1 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 }$

Area of Triangle ${ T } _{ 2 }$ $=\dfrac { 1 }{ 2 } \times \text{base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 }$

Ratio of area of two triangles,
$\dfrac { \text{Area of triangle} \ { T } _{ 1 } }{\text{ Area of triangle} \ { T } _{ 2 } } =\frac { \frac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 } }{ \frac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 } }$      
$ =\dfrac { h _{ 1 } }{ { h } _{ 2 } } $                                      (Base of two triangles are equal. So, $ { b } _{ 1 } = { b } _{ 2 }$) 
Proved.              

State true or false:

The ratio of the areas of two triangles of the same height is equal to the ratio of their bases.

  1. True

  2. False


Correct Option: A
Explanation:

To prove: Ratio of the areas of two triangles of the same height is equal to the ratio of their bases.
Proof:
Let us take triangle ${ T } _{ 1 }$ with height  ${ h } _{ 1 }$ and base ${ b } _{ 1 }$ and Triangle ${ T } _{ 2 }$ with height  ${ h } _{ 2 }$ and base ${ b } _{ 2 }$.

Area of Triangle ${ T } _{ 1 }$ $=\dfrac { 1 }{ 2 } \times\ \text{ base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 }$

Area of Triangle ${ T } _{ 2 }$ $=\dfrac { 1 }{ 2 } \times\ \text{ base}\times \text{height}\ =\dfrac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 }$

Ratio of area of two triangles,
$\dfrac { \text{Area of triangle} \  { T } _{ 1 } }{\text{ Area of triangle} \  { T } _{ 2 } } =\dfrac { \frac { 1 }{ 2 } \times { b } _{ 1 }\times { h } _{ 1 } }{ \frac { 1 }{ 2 } \times { b } _{ 2 }\times { h } _{ 2 } } \ $
$ =\dfrac { { b } _{ 1 } }{ { b } _{ 2 } } $                      (Height of two triangles are equal So,$ { h } _{ 1 } = { h } _{ 2 }$) 
Hence, proved.

The areas of two similar triangles are $12$ ${cm}^{2}$ and $48$ ${cm}^{2}$. If the height of the smaller one is $2.1$ $cm$, then the corresponding height of the bigger one is:

  1. $4.41$ $cm$

  2. $8.4$ $cm$

  3. $4.2$ $cm$

  4. $0.525$ $cm$


Correct Option: C
Explanation:

Areas of two similar triangles are $12 cm^2$ and $48 cm^2$
For similar triangles the ratio of areas is equal to the ratio of square of corresponding heights
Hence, $\dfrac{A _1}{A _2} = \dfrac{(h _1)^2}{(h _2)^2}$

$\dfrac{12}{48} = \dfrac{(2.1)^2}{(h _2)^2}$

$(h _2)^2= 4 \times (2.1)^2$

$h _2 = 2 \times 2.1$

$h _2 = 4.2 cm$