Tag: maths
Questions Related to maths
If $\vec a, \, \vec b$ are two non-collinear vectors, then the position vector $\vec a + \vec b, \, \vec a - \vec b, \,and \, \vec a + \lambda {\vec b}$ are collinear for some real values of $\lambda$.
If $\bar {a}, \bar {b}$ and $\bar {c}$ are non-zero non collinear vectors and $\theta(\neq 0 , \pi)$ is the angle between $\bar {b}$ and $\bar {c}$ if $(\bar {a}\times \bar {b}) \times \bar {c}=\dfrac {1}{2} |\bar {b}|\bar {c}|\bar {a}$. then $\sin \theta =$
The points with position vectors $ 60i + 3j, 40i -8j$ and $ ai -52j $ are collinear if
The three points $ABC$ have position vectors $(1,x,3),(3,4,7)$ and $(y,-2,-5)$ are collinear then $(x,y)=$
If the three points $A(\overline a),B(\overline b),C(\overline c) $ are collinear ,the line passing through them is
$\overline r=\overline a+\lambda(\overline b-\overline a)$ then value of $\lambda $ is
If points (1,2), (3 , 5) and (0 , b ) are collinear the value of b is
The following lines are $\hat { r } =\left( \hat { i } +\hat { j } \right) +\lambda \left( \hat { i } +2\hat { j } -\hat { k } \right) +\mu \left( -\hat { i } +\hat { j } -\hat { 2k } \right) $
If the lines $x=1+a,y=-3-\lambda a,z=1+\lambda a$ and $x=\cfrac { b }{ 2 } ,y=1+b,z=2-b$ are coplanar, then $\lambda$ is equal to
If $\vec { a } ,\vec { b } ,\vec { c } $ are three non-zero vectors, no two of which are collinear and the vector $\vec { a } +\vec { b } $ is collinear with $\vec { c }, \vec { b } +\vec { c } $ is collinear with $\vec {a},$ then $\vec { a } +\vec { b } +\vec { c }$ is equal to -
If the points with position vectors $60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}$ and $a\hat{i}-52j$ are collinear, then $a=?$