Tag: maths
Questions Related to maths
If the three points with position vectors $\displaystyle \bar{a}-2\bar{b}+3\bar{c}, \ 2\bar{a}+\lambda \bar{b}-4\bar{c}, \ -7\bar{b}+10\bar{c} $ are collinear, then $\displaystyle \lambda= $
The vectors $2\hat i + 3\hat j, \ 5\hat i + 6\hat j$ and $8\hat i + \lambda \hat j$ have their initial points at $(1,1)$. The value of $\lambda$ so that the vectors terminate on one straight line is
For what value of $m$, the points $(3,5)$, $(m,6)$ and $\begin{pmatrix} \dfrac { 1 }{ 2 },\dfrac {15 }{ 2 } \end{pmatrix}$ are collinear?
If the points $(p,0)$, $(0,q)$ and $(1,1)$ are collinear, then $\dfrac { 1 }{ p }+\dfrac { 1 }{ q }$ is equal to:
Determine if the points $(1,5)$ $(2,3)$ and $(-2,-11)$ are collinear.
In each of the following find the value of $k$, for which the points are collinear.
(i) $(7,-2)$, $(5,1)$, $(3,k)$
(ii) $(8,1)$, $(k,-4)$, $(2,-5)$
Are the points (1, 1), (2, 3) and (8, 11) collinear ?
If $\vec{a},\vec{b},\vec{c}$ are the position vectors of points lie on a line, then $\vec{a}\times \vec{b}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=$
Assertion ($A$): The points with position vectors $\overline{a},\overline{b},\overline{c}$ are collinear if $2\overline{a}-7\overline{b}+5\overline{c}=0$.
Reason ($R$): The points with position vectors $\overline{a},\overline{b},\overline{c}$ are collinear if $l\overline{a}+m\overline{b}+n\overline{c}=\overline{0}$.
The points with position vectors $\vec{a}+\vec{b},\vec{a}-\vec{b}$ and $\vec{a}+\lambda\vec{b}$ are collinear for