Tag: maths

Questions Related to maths

If the three points with position vectors $\displaystyle \bar{a}-2\bar{b}+3\bar{c}, \ 2\bar{a}+\lambda \bar{b}-4\bar{c}, \ -7\bar{b}+10\bar{c} $ are collinear, then $\displaystyle \lambda= $

  1. $1$

  2. 2

  3. $3$

  4. none of these


Correct Option: C
Explanation:

The given vectors are collinear, so $l(\bar{a} - 2\bar{b} + 3\bar{c}) + k(2\bar{a} + \lambda\bar{b} - 4\bar{c}) = (l + k)(-7\bar{b} + 10\bar{c})$
Comparing the coefficients of $\bar{a} \rightarrow l + 2k = 0 $
$\bar{b} \rightarrow -2l + \lambda k = -7l -7k$
$\bar{c} \rightarrow 3l - 4k = 10l + 10k$
$\Rightarrow l = -2k$ and so $\lambda = 3$

The vectors $2\hat i + 3\hat j, \ 5\hat i + 6\hat j$ and $8\hat i + \lambda \hat j$ have their initial points at $(1,1)$. The value of $\lambda$ so that the vectors terminate on one straight line is

  1. 9

  2. 6

  3. 3

  4. 0


Correct Option: A

For what value of $m$, the points $(3,5)$, $(m,6)$ and $\begin{pmatrix} \dfrac { 1 }{ 2 },\dfrac {15 }{ 2 } \end{pmatrix}$ are collinear?

  1. $9$

  2. $5$

  3. $3$

  4. $2$


Correct Option: D
Explanation:

As the points are collinear, the slope of the line joining any two points, should be same as the slope of the line joining two other points. 
Slope of the line passing through points $\left( { x } _{ 1 },{ y } _{ 1 } \right) $ and $\left( { x } _{ 2 },{ y } _{ 2 } \right)$ $ $=$ $ $\dfrac { { y } _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-x _{ 1 } } $
So, slope of the line joining $ (3,5) , (m,6) = $ Slope of the line joining $ (3,5) $ and $\left  (\dfrac {1}{2}, \dfrac {15}{2}\right ) $ 

Therefore, $ \dfrac { 6 - 5 }{ m - 3 } = \dfrac { \frac {15}{2} - 5 }{ \frac {1}{2} - 3 } $
$\Rightarrow  \dfrac { 1 }{ m - 3 } = -1 $

$\Rightarrow  m - 3 = -1 $

$\Rightarrow  m = 2 $

If the points $(p,0)$, $(0,q)$ and $(1,1)$ are collinear, then $\dfrac { 1 }{ p }+\dfrac { 1 }{ q }$ is equal to:

  1. $-1$

  2. $1$

  3. $2$

  4. $0$


Correct Option: B
Explanation:

As the points are collinear, the slope of the line joining

any two points, should be same as the slope of the line joining two other

points.

Slope of the line passing through points $\left( { x } _{ 1 },{ y } _{ 1 }

\right) $ and $\left( { x } _{ 2 },{ y } _{ 2 } \right)$ $ = $ $\dfrac { { y

} _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-x _{ 1 } } $

So, slope of the line joining $ (p,0) , (0,q) = $ Slope of the line joining

$ (0,q) $ and $ (1,1) $

$ \dfrac { q - 0 }{ 0 - p } = \dfrac { 1 - q }{ 1 - 0 } $

$ - \dfrac { q }{ p } = 1 - q $

Dividing both sides by $q$,
$ - \dfrac { 1 }{ p } =  \dfrac { 1 }{ q } - 1 $

$ => \dfrac { 1 }{ p } +  \dfrac { 1 }{ q } = 1 $

Determine if the points $(1,5)$ $(2,3)$ and $(-2,-11)$ are collinear.

  1. True

  2. False


Correct Option: B
Explanation:

The given points are $A(1,5)$, $B(2,3)$ and $C(-2,-11)$.


Let us calculate the distance : $AB$, $BC$ and $CA$ by using distance formula.

$AB =\sqrt { (2-1)^{ 2 }+(3-5)^{ 2 } } =\sqrt { (1)^{ 2 }+(-2)^{ 2 } } $

$=\sqrt {1+4} = \sqrt{ 5 }$ units

$BC =\sqrt { (-2-2)^{ 2 }+(-11-3)^{ 2 } }=\sqrt { (-4)^{ 2 }+(-14)^{ 2 } }$

$=\sqrt {16+196} =\sqrt {212} = 2\sqrt{53}$ units

$CA =\sqrt { (-2-1)^{ 2 }+(-11-5)^{ 2 } }$

$=\sqrt { (-3)^{ 2 }+(-16)^{ 2 } } =\sqrt {9+256} = \sqrt {265 }$ 

$=\sqrt {5}\times\sqrt {53}$ units

From the above we see that : $AB+BC\neq CA$

Hence, the above stated points $A(1,5)$, $B(2,3)$ and $C(-2,-11)$ are not collinear.

In each of the following find the value of $k$, for which the points are collinear.
(i) $(7,-2)$, $(5,1)$, $(3,k)$
(ii) $(8,1)$, $(k,-4)$, $(2,-5)$

  1. (i) $k = 4$
  2. (i) $k = 5$

  3. (ii) $k = 3$

  4. (ii) $k = 2$


Correct Option: A,C
Explanation:

Since the given points are collinear, they do not form a triangle, which means area of the triangle is Zero.

Area of a triangle with vertices $({ x } _{ 1 },{ y } _{ 1 })$ ; $({ x } _{ 2 },{ y

} _{ 2 })$  and $({ x } _{ 3 },{ y } _{ 3 })$  is $ \left| \dfrac { {

x } _{ 1 }({ y } _{ 2 }-{ y } _{ 3 })+{ x } _{ 2 }({ y } _{ 3 }-{ y } _{ 1 })+{ x } _{

3 }({ y } _{ 1 }-{ y } _{ 2 }) }{ 2 }  \right| $


1) Substituting the points $({ x } _{ 1 },{ y } _{ 1 }) = (7,-2) $ ; $({ x

} _{ 2 },{ y } _{ 2 }) = (5,1) $  and $({ x } _{ 3 },{ y } _{ 3 }) = (3,k)$

In the area formula, we get

$ \left| \dfrac { 7(1-k) + 5(k+2) + 3(-2-1) }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 7 -7k + 5k + 10 - 9 }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 8 -2k }{ 2 }  \right|  =

0 $

$ \Rightarrow  8 - 2k = 0 $

$ \Rightarrow  k = 4 $

2) Substituting the points $({ x } _{ 1 },{ y } _{ 1 }) = (8,1) $ ; $({ x

} _{ 2 },{ y } _{ 2 }) = (k,-4) $  and $({ x } _{ 3 },{ y } _{ 3 }) = (2,-5)$ in the area formula, we get


$ \left| \dfrac { 8(-4+5) + k(-5-1) + 2(1+4) }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 8 -6k +10 }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 18 -6k }{ 2 }  \right|  =

0 $

$ \Rightarrow  18 - 6k = 0 $

$ \Rightarrow  k = 3 $

Are the points (1, 1), (2, 3) and (8, 11) collinear ?

  1. collinear

  2. Non collinear

  3. coplaner

  4. None of above


Correct Option: B
Explanation:

Area of triangle formed by these vertices is 
$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \ 2 & 3 & 1 \ 8 & 11 & 1 \end{vmatrix}$
Applying ${ R } _{ 2 }\rightarrow { R } _{ 2 }-{ R } _{ 1 },{ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 1 }$
$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \ 1 & 2 & 0 \ 7 & 10 & 0 \end{vmatrix}=\frac { 1 }{ 2 } \left( 10-14 \right) =2$
Hence points are non collinear 

If $\vec{a},\vec{b},\vec{c}$ are the position vectors of points lie on a line, then $\vec{a}\times \vec{b}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=$

  1. $0$

  2. $ \vec{b}$

  3. $1$

  4. $\vec{a}$


Correct Option: A

Assertion ($A$): The points with position vectors $\overline{a},\overline{b},\overline{c}$ are collinear if $2\overline{a}-7\overline{b}+5\overline{c}=0$.
Reason ($R$): The points with position vectors $\overline{a},\overline{b},\overline{c}$ are collinear if $l\overline{a}+m\overline{b}+n\overline{c}=\overline{0}$.

  1. Both $A$ and $R$ are true and $R$ is correct reason of $A$

  2. Both $A$ and $R$ are true and $R$ is not correct reason of $A$

  3. $A$ is true $R$ is false

  4. $A$ is false $R$ is true


Correct Option: C
Explanation:

$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $ are collinear

$\Rightarrow \ni l,m,n$ all zeros such that 
$l\overrightarrow { a } +m\overrightarrow { b } +n\overrightarrow { c } =0$ if $2\overrightarrow { a } -7\overrightarrow { b } +5\overrightarrow { c } =0$
then $\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $ are collinear since $2-7+5=0$

The points with position vectors $\vec{a}+\vec{b},\vec{a}-\vec{b}$ and $\vec{a}+\lambda\vec{b}$ are collinear for

  1. Only integrals values of $\lambda$

  2. No value of $\lambda$

  3. All real values of $\lambda$

  4. Only rational values of $\lambda$


Correct Option: C