Tag: maths
Questions Related to maths
Let $\overrightarrow{b}$ and $\overrightarrow{c}$ be non collinear vectors.If $\overrightarrow{a}$ is a vector such that $\overrightarrow{a}.\left(\overrightarrow{b}+\overrightarrow{c}\right)=4$ and $\overrightarrow{a}\times\left(\overrightarrow{b}\times \overrightarrow{c}\right)=\left({x}^{2}-2x+6\right)\overrightarrow{b}+\sin{y} .\overrightarrow{c}$ then $\left(x,y\right)$ lies on the line
Three points whose position vectors are $x\bar{i}+y\bar{j}+z\bar{k}$, $\bar{i}+2\bar{j}$ and $-\bar{i}-\bar{j}$ are collinear, then relation between $x, y, z$ is?
If the points $(\alpha, - 1), (2, 1)$ and $(4, 5)$ are collinear, then find $\alpha $ by vector method.
If the points $\bar a + \bar b,\bar a - \bar b,\bar a + k\bar b$ are collinear, then
If $A = (1,2,3) , B = (2,10,1), Q$ are collinear points and $Q _{x}=-1$ then $Q _{z}$ is
If points $\hat i + \hat j, \hat i - \hat j$ and $p \hat i + q \hat j + r \hat k$ are collinear, then
If $\bar { a }, \bar { b }, \bar { c }$ are non-coplaner vector , then the vectors $2\bar { a }- 4\bar { b }+ 4\bar { c }, \bar { a }- 2\bar { b }+ 4\bar { c }$ and $-\bar { a }+ 2\bar { b }+ 4\bar { c }$ are parellel.
If the points $(0, 1, -2), (3, \lambda, -1)$ and $(\mu, -3, -4)$ are collinear, the point on the same line is
If the points $(-1, 3, 2), (-4, 2, -2)$ and $(5, 5, \lambda)$ are collinear, then $\lambda$ is equal to
The values of $a$ for which point $(8, -7, a), (5, 2, 4)$ and $(6, -1, 2)$ are collinear.