Tag: maths

Questions Related to maths

Mark the correct alternative of the following.
The radius of a wire is decreased to one-third. If volume remains the same, the length will become?

  1. $3$ times

  2. $6$ times

  3. $9$ times

  4. $27$ times


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be the volume of the two cylinders with $h _1$ and $h _2$ as their heights.

Let $r _1$ and $r _2$ be their base radius.
It is given that, the radius of a wire is decreased to on-third.
$\therefore$  $r _2=\dfrac{1}{3}r _1$

$\Rightarrow$  $V _1=V _2$             [ Given ]
$\Rightarrow$  $\pi r _1^2 h _1=\pi r _2^2 h _2$

$\Rightarrow$  $r _1^2 h _1=\left(\dfrac{1}{3}r _1\right)^2 h _2$

$\Rightarrow$  $r _1^2 h _1=\dfrac{1}{9} r _1^2 h _2$

$\Rightarrow$  $h _2=9h _1$

$\therefore$  The length will become $9$ times.

Mark the correct alternative of the following.
If the height of a cylinder is doubled and radius remains the same, then volume will be?

  1. Doubled

  2. Halved

  3. Same

  4. Four times


Correct Option: A
Explanation:

Let $V _1$ be the volume of the cylinder with radis $r _1$ and height $h _1,$ then

$\Rightarrow$  $V _1=\pi r _1^2 h _1$            ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimension, then
$\Rightarrow$  $r _2=r _1,$  $h _2=2h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2h _2$

$\Rightarrow$  $V _2=\pi\times{r _1}^2\times 2h _1$

$\Rightarrow$  $V _2=2\times \pi r _1^2 h _1$
From ( 1 ),

$\Rightarrow$  $V _2=2V _1$

$\therefore$  If the height of a cylinder is doubled and radius remains the same, then volume will be $Doubled.$

Mark the correct alternative of the following.
In a cylinder, if radius is halved and height is doubled, the volume will be?

  1. Same

  2. Doubled

  3. Halved

  4. Four times


Correct Option: C
Explanation:

Let $V _1$ be the volume of the cylinder with radis $r _1$ and height $h _1,$ then

$\Rightarrow$  $V _1=\pi r _1^2 h _1$            ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimension, then
$\Rightarrow$  $r _2=\dfrac{1}{2}r _1,$  $h _2=2h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2h _2$

$\Rightarrow$  $V _2=\pi\times\left(\dfrac{r _1}{2}\right)^2\times 2h _1$

$\Rightarrow$  $V _2=\dfrac{1}{2}\times \pi r _1^2 h _1$
From ( 1 ),

$\Rightarrow$  $V _2=\dfrac{1}{2}V _1$

$\therefore$  In a cylinder, if radius is halved and height is doubled, the volume will be $Halved$

Mark the correct alternative of the following.
If the radius of a cylinder is doubled and the height remains same, the volume will be?

  1. Doubled

  2. Halved

  3. Same

  4. Four times


Correct Option: D
Explanation:

Let $V _1$ be the volume of the cylinder with radius $r _1$ and height $h _1,$ then

$V _1=\pi r _1^2 h _1$           ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimensions, then
$r _2=2r _1,\,h _2=h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2 h _2$

$\Rightarrow$  $V _2=\pi\times(2r _1)^2\times h _1$

$\Rightarrow$  $V _2=4\times \pi r _1^2 h _1$
From ( 1 ),
$\therefore$  $V _2=4V _1$
Hence, If the radius of a cylinder is doubled and the height remains same, the volume will be Four times.

Mark the correct alternative of the following.
The volume of a cylinder of radius r is $1/4$ of the volume of a rectangular box with a square base of side length x. If the cylinder and the box have equal heights, what is r in terms of x?

  1. $\dfrac{x^2}{2\pi}$

  2. $\dfrac{x}{2\sqrt{\pi}}$

  3. $\dfrac{\sqrt{2x}}{\pi}$

  4. $\dfrac{\pi}{2\sqrt{x}}$


Correct Option: B
Explanation:

Let the height of the cylinder be $h.$

Volume of the cylinder $=\pi r^2 h$
Height of the rectangular box $=h$
Since, base is square with side $x.$
Volume of the box $=x\times x\times h=x^2 h$
According to question,
$\Rightarrow$  $\pi r^2  h=\dfrac{1}{4} x^2 h$

$\Rightarrow$  $r^2=\dfrac{1}{4\pi}x^2$
Taking square root on both sides,
$\Rightarrow$  $r=\dfrac{x}{2\sqrt{\pi}}$

Mark the correct alternative of the following.
Two circular cylinders of equal volume have their heights in the ratio $1:2$. Ratio of their radii is?

  1. $1:\sqrt{2}$

  2. $\sqrt{2}:1$

  3. $1:2$

  4. $1:4$


Correct Option: A
Explanation:
$\dfrac{h _1}{h _2}=\dfrac{1}{2}$        [ Given ]
Let $V _1$ and $V _2$ are volume of cylinders.

$\therefore$  $V _1=V _2$          [ Given ]

$\therefore$  $\dfrac{V _1}{V _2}=1$

$\Rightarrow$  $\dfrac{\pi r _1^2h _1}{\pi r _2^2 h _2}=1$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)=1$

But it is given that,
$\dfrac{h _1}{h _2}=\dfrac{1}{2}$

$\therefore$  $\left(\dfrac{r _1}{r _2}\right)^2\times\dfrac{1}{2}=1$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2=2$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2=\dfrac{2}{1}$

$\Rightarrow$  $\dfrac{r _1}{r _2}=\dfrac{\sqrt{2}}{1}$

$\therefore$  The ratio of the radii of the two cylinders is $\sqrt{2}:1$

Mark the correct alternative of the following.
The altitude of a right circular cylinder is increased six times and the base area is decreased one-ninth of its value. The factor by which the lateral surface of the cylinder increases, is?

  1. $\dfrac{2}{3}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{3}{2}$

  4. $2$


Correct Option: D
Explanation:

Curved surface area of cylinder $=2\pi r h$


Height is increased to $6$ times $=6h$


Base area is decreased to $\left(\dfrac{1}{9}th\right)$ 

i.e. $\pi (r{^{\prime}})^2=\dfrac{1}{9}\pi r^2\Rightarrow r^{\prime}=\dfrac13r $

Now,
New curved surface area $=2\pi\times\dfrac{1}{3}r\times 6h$

                                           $=2\times(2\pi r h)$
$\therefore$  Lateral surface area becomes twice.

Mark the correct alternative of the following.
The height h of a cylinder equal the circumference of the cylinder. In terms of h, what is the volume of the cylinder?

  1. $\dfrac{h^3}{4\pi}$

  2. $\dfrac{h^2}{2\pi}$

  3. $\dfrac{h^3}{2}$

  4. $\pi h^3$


Correct Option: A
Explanation:

Let $h$ be the height of cylinder with radius $r.$

It is given that,
$2\pi r =h$
$\Rightarrow$  $r=\dfrac{h}{2\pi}$
Therefore, the volume of the cylinder is
$V=\pi r^2 h$

$\Rightarrow$  $V=\pi\left(\dfrac{h}{2\pi}\right)^2h$

$\Rightarrow$  $V=\dfrac{h^3}{4\pi}$

Mark the correct alternative of the following.
If the heights of two cones are in the ratio of $1:4$ and the radii of their bases are in the ratio $4:1$, then the ratio of their volumes is?

  1. $1:2$

  2. $2:3$

  3. $3:4$

  4. $4:1$


Correct Option: D
Explanation:

The base radius of cone is $'r'$ and vertical height $'h'$.

$\Rightarrow$  Volume of cone $=\dfrac{1}{3}\pi r^2 h$
Let the base radius and height of the two cones be $r _1,h _1$ and $r _2,h _2$ respectively.
It is given that the ratio between the heights of the two cones is $1:4$.
Since, only the ratio is given, to use them in our equation we introduce a constant $'k'.$
So,
$h _1=1k$
$h _2=4k$
It is also given that, the ratio between the base radius of the two cones is $4:1.$
Since, only the ratio is given, to use then in our equation we introduce another constant $'p'$
So,
$r _1=4p$
$r _2=1p$
Let $V _1$ and $V _2$ be the volumes of cones.

$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{\pi\times 4p\times 4p\times 1k\times 3}{3\times \pi\times 1p\times 1p\times 4k}$

$\therefore$   $\dfrac{V _1}{V _2}=\dfrac{4}{1}$

A hollow cylindrical pipe is $21 \ cm$ long. If its outer and inner diameters are $10 \ cm$ and $6 \ cm$ respectively, them the volume of the metal used in making the pipe is $\displaystyle \left(Take\, \pi\, =\, \frac{22}{7}\right)$

  1. $1048\, cm^{3}$

  2. $1056\, cm^{3}$

  3. $1060\, cm^{3}$

  4. $1064\, cm^{3}$


Correct Option: B
Explanation:

The pipe is in the shape of a hollow cylinder.
Volume of a hollow Cylinder of outer Radius "R", inner Radius ""r" and height "h" $ = \pi ({ R }^{ 2 }-{ r }^{ 2 })h $
Outer Radius $ = \frac {10}{2} = 5  cm $
Inner Radius $ = \frac {6}{2} = 3  cm $
Hence, volume of the pipe $ = \frac { 22 }{ 7 } \times ({ 5 }^{ 2 }-{ 3 }^{ 2 })\times 21 = 1056  {cm}^{3} $