Tag: maths

Questions Related to maths

If a circular grass lawn of $35\ m$ in radius has a path $7\ m$ wide running around it on the outside, then the area of the path is

  1. $1450\ m^2$

  2. $1576\ m^2$

  3. $1694\ m^2$

  4. $3368\ m^2$


Correct Option: C
Explanation:

Radius of bigger circle(with the path) = $35 + 7 = 42\ m.$
Thus area of the path $=$ Area of bigger circle $-$ Area of smaller circle
$\therefore$ Required area $= \pi (42)^2 - \pi (35)^2 = \dfrac{22}{7} \times (42 + 35)(42 - 35) = 22 \times 77 = 1694\ m^2$

A wire in the shape of an equilateral triangle encloses an area $s$ sq. cm  If the same wire is bent to form circle, the area of the circle will be

  1. $\displaystyle \frac{\pi s^{2}}{9}$

  2. $\displaystyle \frac{3s^{2}}{\pi }$

  3. $\displaystyle \frac{3s}{\pi }$

  4. $\displaystyle \frac{3\sqrt{3}s}{\pi }$


Correct Option: D
Explanation:

Area of equilateral triangle $= s$ sq.cm
$\Rightarrow  \dfrac{\sqrt3}{4} a^2 = s$, [where $a$, the side of equilateral triangle]
$\Rightarrow a= \sqrt{\dfrac{4s}{\sqrt3}}$
Now perimeter of equilateral triangle $ 3\times a =3 \times\sqrt{\dfrac{4s}{\sqrt 3}}$ cm 
Circumference of circle $=$ perimeter of equilateral triangle
$\Rightarrow 2\pi r= 3 \times\sqrt{\dfrac{4s}{\sqrt 3}}$, [where $r$ the radius of circle]
Solve the above expression for $r$, we get 
$r= \dfrac{3}{2\pi} \times \sqrt{\dfrac{4s}{\sqrt 3}}$
Area of circle $=\pi r^2 = \pi \times \left ( \dfrac{3}{2\pi} \times \sqrt{\dfrac{4s}{\sqrt 3}} \right )^2$
After simplification, we get
Area of circle $=\dfrac{3s\sqrt3}{\pi}$ sq.cm

A bicycle wheel has diameter 1m. If the bicycle travels one kilometer, then the number of revolutions the wheel make is.

  1. $\dfrac {1}{\Pi }$

  2. $\dfrac {100}{\Pi }$

  3. $\dfrac {500}{\Pi }$

  4. $\dfrac {1000}{\Pi }$


Correct Option: D
Explanation:

Let the number of revolution of the wheel is n.
Then,
n $\times$ circumference of wheel = Distance travelled by bicycle
$n \times  2\Pi  \times \frac {1}{2}=1$ kilometer 
$n \times  \Pi $=1000 meter
$n=\frac {1000}{\Pi }$

A dog is chained on a $6\ ft$ leash, fastened to the corner of a rectangular building. Calculate, about how much area does the dog have to move in.

  1. $27\ ft^{2}$

  2. $36\ ft^{2}$

  3. $56.55\ ft^{2}$

  4. $84.82\ ft^{2}$


Correct Option: D
Explanation:

A dog is chained on a $6$ ft leash to the corner of a rectangular building.
Since the building is rectangular, the dog is left with an angle of $360 - 90 = 270^o$ for it to roam around.
Also, the length of the leash will act as the radius of this sector.
$\therefore$ Area of the sector $= \cfrac{270}{360} \times \pi \times 6^2$
$= \cfrac{3}{4} \times \pi \times 36$
$= 84.82 \ \ ft^2$

The volume, V $cm^{2}$, of a hollow cylindrical pipe of length $l$ cm, outer radius R cm and inner radius r cm is given by the formula : $V\, =\, \pi\, (R^{2}\, -\, r^{2}).\, l$

Find r, if $V\, =\, 22,\, R\, =\, 2,\, l\, =\, 4$ and $\pi,\, 3\displaystyle \frac{1}{7}.$

  1. 1.5

  2. 1.2

  3. 1.4

  4. 1.6


Correct Option: A
Explanation:

Given $V= \pi \left ( R^{2}-r^{2} \right )l$

$V= \pi  R^{2}-\pi r^{2} l$

$\pi r^{2}l= \pi R^{2}l-V$


$ r^{2}= \dfrac{\pi R^{2}l-V}{\pi l}$

$\therefore  r= \sqrt{\dfrac{\pi R^{2}l-V}{\pi l}}$

Given $V=22 ,R=2 ,L=4 , \pi = 3\tfrac{1}{7}= \frac{22}{7}$

$\therefore r= \sqrt{\dfrac{\frac{22}{7}\times 4\times 4-22}{\dfrac{22}{7}\times4}}= \sqrt{\dfrac{352-154}{88}}= \sqrt{\dfrac{198}{88}}= \sqrt{\dfrac{9}{4}}= 1.5$

An iron pipe $20\space cm$ long has exterior diameter equal to $25\space cm$. If the thickness of the pipe is $1\space cm$, find the whole surface area of the pipe.

  1. $3167\space cm^2$

  2. $3160\space cm^2$

  3. $3068\space cm^2$

  4. $3268\space cm^2$


Correct Option: A
Explanation:

TSA of pipe $=$ $2\pi h(R+r)+2\pi ({ R }^{ 2 }-{ r }^{ 2 })$


                     $=$ $2\times \dfrac { 22 }{ 7 } \times 20(12.5+11.5)+2\times \dfrac { 22 }{ 7 } \left( { \left( 12.5 \right)  }^{ 2 }-{ \left( 11.5 \right)  }^{ 2 } \right) $


                     $=$ $\dfrac { 44\times 480 }{ 7 } +\dfrac { 44\times 24 }{ 7 } $

                    $ =$ $\dfrac { 21120 }{ 7 } +\dfrac { 1056 }{ 7 } =\dfrac { 22176 }{ 7 } $

                     $=$ $3167$ ${ cm }^{ 2 }$

The diameters of two cylinders are in the ratio of 2:1 and their volumes are equal. The ratio of their heights will be _________.

  1. 1:6

  2. 1:2

  3. 1:4

  4. 3:4


Correct Option: C
Explanation:
Let the diameter of the given two cylinders are $2x$ and $x$, 
so the radius of these cylinders are $x$ and $0.5 x$ respectively. 

Let the height of these cylinders are $ h _1$ and $ h _2$ respectively.

Given $ πx^2h _1=π(0.5x)^2h _2 $

$∴\dfrac{h _1}{h _2}=\dfrac{(0.5)^2}{1}=\dfrac 14$

$1:4.$

If the volume of a cylinder is $448\pi:cm^3$ and height 7 cm, its total surface area will be ______________.

  1. $352:cm^2$

  2. $754.28:cm^2$

  3. $724.64:cm^2$

  4. $354:cm^2$


Correct Option: B
Explanation:
Let the radius of cylinder is $r$ cm and height of this is $7$ cm.

Given, volume of cylinder
$=πr^2h$

$448π=πr^2×7⟹r2=64⟹r=8$ cm

∴  Required total surface area of cylinder
$=2πr(r+h)=2π×8(8+7)$

$=2×\dfrac {22} 7×8×15 $

$=754.28$ $cm^2$

200 wooden balls each of diameter 70 mm are to be painted Find the cost of painting these balls at 10 paise/$\displaystyle cm^{2}$

  1. Rs.3080

  2. Rs.2771

  3. Rs.4000

  4. Rs.7000


Correct Option: A
Explanation:

Total surface area of 200 balls of $\displaystyle \frac{35}{10}$ cm radius will be $\displaystyle 200\times 4\times \frac{22}{7}\times \frac{35}{10}\times \frac{35}{10}$ mm
The cost will be Rs $\displaystyle \frac{200\times 4\times 22\times 35\times 35}{7\times 10\times 10\times 100}$ which simplifies to Rs 3080

A rectangular paper of dimensions 6 cm and 3 cm is rolled to form a cylinder with height equal to the width of the paper, then its base radius is

  1. $ \displaystyle \frac{6}{\pi }cm $

  2. $ \displaystyle \frac{3}{2\pi }cm $

  3. $ \displaystyle \frac{6}{2\pi }cm $

  4. $ \displaystyle \frac{9}{2\pi }cm $


Correct Option: C
Explanation:

The length of the rectangle become the circumference of the base of the cylinder 

$\therefore 2\pi r=6\Rightarrow r=\frac{6}{2\pi }$ cm