Tag: maths

Questions Related to maths

The ratio between the radius of the base and the height of a cylinder is $2:3$. If its volume is $12936$ cu. cm, the total  surface area of the cylinder is :

  1. $2587.2 c{m^2}$

  2. $3080 c{m^2}$

  3. $25872 c{m^2}$

  4. $38808 c{m^2}$


Correct Option: B
Explanation:
We have $\dfrac{r}{h}=\dfrac{2}{3}\Rightarrow\,h=\dfrac{3r}{2}$

Volume of a cylinder$=\pi{r}^{2}h$

$\Rightarrow\,12936=\dfrac{22}{7}\times{r}^{2}\times \dfrac{3r}{2}$

$\Rightarrow\,12936=\dfrac{11\times 3}{7}{r}^{3}$

$\Rightarrow\,{r}^{3}=\dfrac{12936\times 7}{33}=2744$

$\Rightarrow\,r=\sqrt[3]{2744}=14\ cm$

We have $h=\dfrac{3r}{2}=\dfrac{3\times 14}{2}=21\ cm$

Total Surface area$=2\pi\,r\left(r+h\right)=2\times\dfrac{22}{7}\times 14\left(14+21\right)=2\times\dfrac{22}{7}\times 14\times 35=140\times 22=3080\ sq.cm$

A cylinder and cone of equal base radius and equal height are given. Which of the following statement is true/

  1. Volume of cylinder and cone are equal

  2. Volume of cylinder is one-third of volume of cone

  3. Volume of cone is half of the volume of cylinder

  4. Volume of cone is one-third of volume of cylinder


Correct Option: A

Find the volume of a solid cylinder whose radius is $14$cm and height $30$cm

  1. $18380cm^3$

  2. $18480cm^3$

  3. $18580cm^3$

  4. $18680cm^3$


Correct Option: A

the radii of two cylinders are in the ratio 2:3 and their height are in the ratio 5:3. ratio of their volume

  1. $20:27$

  2. $10:9$

  3. $18:13$

  4. $9:20$


Correct Option: A

A solid cylinder has a total surface area of $231cm^2$. Its curved surface area. Find the volume of the cylinder?

  1. $270cm^3$

  2. $269.5cm^3$

  3. $256.5cm^3$

  4. $289.5cm^3$


Correct Option: A

Volume of a cylinder when $d=7\ cm$ and $h=3\ cm$

  1. $118\ cm^{3}$

  2. $115.5\ cm^{3}$

  3. $155.5\ cm^{3}$

  4. $808.5\ cm^{3}$


Correct Option: A

A cylindrical pipe is made from a metal sheet of length 88 cm and breadth 20 cm. What is the volume of this pipe?

  1. $2800$ ${ cm }^{ 3 }$

  2. $12320$ ${ cm }^{ 3 }$

  3. $13202$ ${ cm }^{ 3 }$

  4. $13220$ ${ cm }^{ 3 }$


Correct Option: A
Explanation:

We have,

Length $l=88\,cm.$

Breadth$b=20\,cm.$

Volume $=?$

Volume of cylindrical pipe $=\pi {{r}^{2}}h$

We know that,

$ circumfrance=Breadth=2\pi r $

$ 2\pi r=20 $

$ \pi r=10 $

$ r=\dfrac{10}{\pi } $

$ r=\dfrac{10}{\dfrac{22}{7}} $

$ r=\dfrac{70}{22} $

$ r=\dfrac{35}{11}\,\,cm. $

Then,

Volume of cylindrical pipe $V=\pi {{r}^{2}}h$

$ V=\dfrac{22}{7}\times \dfrac{35}{11}\times \dfrac{35}{11}\times 88 $

$ V=2\times 5\times 35\times 8 $

$ V=80\times 35 $

$ V=2800\,c{{m}^{3}} $

Hence, this is the answer.

If sum of radius and height of a cylinder is 6, then its maximum volume is 

  1. $32\pi$

  2. $16\pi$

  3. $8\pi$

  4. None of these


Correct Option: A

Mark the correct alternative of the following.
Two cylindrical jars have their diameters in the ratio $3:1$, but height $1:3$. Then the ratio of their volumes is?

  1. $1:4$

  2. $1:3$

  3. $3:1$

  4. $2:5$


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be the volume of the two cylinders with radius $r _1$ and height $h _1$, and radius $r _2$ and height $h _2.$

$\dfrac{2r _1}{2r _2}=\dfrac{3}{1}$ and $\dfrac{h _1}{h _2}=\dfrac{1}{3}$             [ Given ]
So,
$V _1=\pi r _1^2h _1$           ----- ( 1 )
Now,
$V _2=\pi r _2^2h _2$            ---- ( 2 )
From equation ( 1 ) and ( 2 ), we get
$\dfrac{V _1}{V _2}=\left(\dfrac{r _1}{r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=\left(\dfrac{2r _1}{2r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=(3)^2\left(\dfrac{1}{3}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{3}{1}$

Mark the correct alternative of the following.
In a cylinder, if radius is doubled and height is halved, curved surface area will be?

  1. Halved

  2. Doubled

  3. Same

  4. Four times


Correct Option: C
Explanation:

Let the radius of cylinder be $r$ and height be $h.$

So, the original curved surface area $=2\pi rh$
When, radius is doubled and height is halved,
New curved surface area $=2\pi \times 2r\times \dfrac{h}{2}$

                                           $=2\pi r h$
$\therefore$  New curved surface area $=$ Original surface area.
$\therefore$  There is no change in the curved surface area of the cylinder