Let the coordinates of point$P$ be $\left( { x } _{ 1 },{ y } _{ 1 } \right). $
Equation of any line through $P$ can be written as $\displaystyle \frac { x-{ x } _{ 1 } }{ \cos { \theta } } =\frac { y-{ y } _{ 1 } }{ \sin { \theta } } =r$ ...(1)
$\Rightarrow x={ x } _{ 1 }+r\cos { \theta } ,y={ y } _{ 1 }+r\sin { \theta } .$
Coordinates of any point an (1) is of the form $\left( { x } _{ 1 }+r\cos { \theta } ,{ y } _{ 1 }+r\sin { \theta } \right) .$
This point will lie on ${ ax }^{ 2 }+2hxy+{ by }^{ 2 }=1$ if
$a\left( { x } _{ 1 }+r\cos { \theta } \right) ^{ 2 }+2h\left( { x } _{ 1 }+r\cos { \theta } \right) \left( { y } _{ 1 }+r\sin { \theta } \right) +b{ \left( { y } _{ 1 }+r\sin { \theta } \right) }^{ 2 }-1=0$
$\Rightarrow { r }^{ 2 }\left( a\cos ^{ 2 }{ \theta } +2h\cos { \theta } \sin { \theta } +b\sin ^{ 2 }{ \theta } \right) +2\left[ { x } _{ 1 }\left( a\cos { \theta } +h\sin { \theta } \right) +{ y } _{ 1 }\left( h\cos { \theta } +b\sin { \theta } \right) \right]$
$ +{ ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1=0$ ...(2)
Let $PQ={ r } _{ 1 }$ and $PR={ r } _{ 2 }.$
Then ${ r } _{ 1 },{ r } _{ 2 }$ are the roots of (2).
$\displaystyle \therefore PQ:PR={ r } _{ 1 }{ r } _{ 2 }=\frac { { ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1 }{ a\cos ^{ 2 }{ \theta } +2h\cos { \theta } \sin { \theta } +b\sin ^{ 2 }{ \theta } } .$
We know rewrite the denominator.
We have$D=a\cos ^{ 2 }{ \theta } +2h\cos { \theta } \sin { \theta } +b\sin ^{ 2 }{ \theta } .\\ $
$\displaystyle =\frac { 1 }{ 2 } \left[ \left( a+b \right) +\left( a-b \right) \cos { 2\theta } \right] +h\sin { 2\theta } $
$\displaystyle =\frac { a+b }{ 2 } +\frac { 1 }{ 2 } \left( a-b \right) \cos { 2\theta } +h\sin { 2\theta } $
Put $\displaystyle \frac { 1 }{ 2 } \left( a-b \right) =k\sin { \alpha } ,h=k\cos { \alpha } .$
$\displaystyle \Rightarrow k=\sqrt { { \left( \frac { a+b }{ 2 } \right) }^{ 2 }+{ h }^{ 2 } } $ and $\displaystyle \tan { \alpha } =\frac { a-b }{ 2h } $
$\displaystyle \therefore D=\frac { 1 }{ 2 } \left( a+b \right) +\sqrt { { \left( \frac { a-b }{ 2 } \right) }^{ 2 }+{ h }^{ 2 } } \sin { \left( 2\theta +\alpha \right) } $
Thus, $\displaystyle PQ.PR=\frac { { ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1 }{ \frac { 1 }{ 2 } \left( a+b \right) +\sqrt { { \left( \frac { a-b }{ 2 } \right) }^{ 2 }+{ h }^{ 2 } } \sin { \left( 2\theta +\alpha \right) } } $
For this to be independent of $\theta$ we must have $\displaystyle { \left( \frac { a-b }{ 2 } \right) }^{ 2 }+{ h }^{ 2 }=0\Rightarrow a=b$ and $n=0.$
But this to be condition for the given curve to represent a circle.