Tag: maths

Questions Related to maths

A pair of tangents are drawn from a point $P$ to the circle $x^{2} + y^{2} = 1$. If the tangents make an intercept of $2$ on the line $x = 2$, the locus of $P$ is

  1. Straight line

  2. Pair of lines

  3. Circle

  4. Parabola


Correct Option: D
Explanation:

Let $P$ be $(h, k)$ then by $SS _{1} = T^{2}$ the equation of pair of tangents drawn from $P$ to $x^{2} + y^{2} = 1$ is
$(h^{2} + k^{2} - 1)(x^{2} + y^{2} - 1) = (hx + ky - 1)^{2}$
Its intersection with the line $x = 1$ is given by
$y^{2}(h^{2} + k^{2} - 1) = (ky + h - 1)^{2}$
or $y^{2}(h^{2} - 1) - 2yk (h - 1) - (h - 1)^{2} = 0 .....(1)$
It is a quadratic in $y$ and we are given that length of intercept is $1 \therefore y _{1} - y _{2} = 2$
or $(y _{1} + y _{2})^{2} - 4y _{1}y _{2} = 1$
or $\left [\dfrac {2k(h - 1)}{h^{2} - 1}\right ]^{2} + 4\dfrac {(h - 1)^{2}}{h^{2} - 1} = 4$
or $\dfrac {4k^{2}}{(h + 1)^{2}} + \dfrac {4(h - 1)}{h + 1} = 4$
or $k^{2} = (h + 1)^{2} - (h^{2} - 1) = 2h + 2$
Hence the locus of $(h, k)$ is $y^{2} =2(x + 1)$ which represents a parabola.

A family of linear functions is given by $f(x) = 1 + c(x + 3)$ where $c \in R$. If a member of this family meets a unit circle centred at origin in two coincidence points then 'c' can be equal to

  1. $-3/4$

  2. $-1$

  3. $3/4$

  4. $1$


Correct Option: A
Explanation:

Given function,

$f(x)=1+c\left( x+3 \right)$                     .....( 1 )               where $c\in R$

We know that,

General equation of circle of radius $a$ meets at the origin is

${{x}^{2}}+{{y}^{2}}={{a}^{2}}$               

But it is unit circle then $a=1$,

Then, equation of circle is

$ {{x}^{2}}+{{y}^{2}}={{1}^{2}} $

$ {{x}^{2}}+{{y}^{2}}=1 $

Let  $f\left( x \right)=y$

By equation $\left( 1 \right)$ and we get,

$y=1+c\left( x+3 \right)$

$y=1+cx+3$                          ......( 2 )

Using distance formula,   at the origin to a line

$ d=\left| \dfrac{0-c\times 0-1-3c}{\sqrt{{{1}^{2}}+{{c}^{2}}}} \right|=1 $

$ \left| \dfrac{-1-3c}{\sqrt{{{1}^{2}}+{{c}^{2}}}} \right|=1 $

Taking square both side and we get, 

$ {{\left( \dfrac{1+3c}{\sqrt{1+{{c}^{2}}}} \right)}^{2}}=1 $

$ {{\left( 1+3c \right)}^{2}}=1+{{c}^{2}} $

$ {{1}^{2}}+{{\left( 3c \right)}^{2}}+6c=1+{{c}^{2}} $

$ 1+9{{c}^{2}}+6c=1+{{c}^{2}} $

$ 9{{c}^{2}}+6c-{{c}^{2}}=0 $

$ 8{{c}^{2}}+6c=0 $

$ 2c\left( 4c+3 \right)=0 $

$ 2c=0,4c+3=0 $

$ c=0,4c=-3 $

$ c=0,c=-\dfrac{3}{4} $

 Hence, It is required solution.

A tangent from $P$, a point in the exterior of a circle touches circle at $Q$. If $OP=13$, $PQ=5$, then the diameter of the circle is ______________

  1. $576$

  2. $15$

  3. $8$

  4. $24$


Correct Option: D
Explanation:

Since tangent is perpendicular to the radius through the point of contact
so, $PQ \bot OQ$

therefore
${\left( {PQ} \right)^2} + {\left( {OQ} \right)^2} = {\left( {OP} \right)^2}$

$ = {\left( 5 \right)^2} + {r^2} = {\left( {13} \right)^2}$

$ = {r^2} = 169 - 25$

$\Rightarrow {r^2} = 144$

$\Rightarrow r = 12cm$

so, diameter of the circle $2 \times r$
$=2 \times 12$ $=24cm$

Tangents $TP$ and $TQ$ are drawn from a point $T$ to circle $x^{2}+y^{2}=a^{2}$. If the point $T$ lies on the line $px+qy=r$, then locus of the centre of circumcircle of $\triangle TPQ$ is

  1. straight line

  2. circle

  3. parabola

  4. ellipse


Correct Option: A

Tangents PA and PB are drawn to the cicle $S\, \equiv \,{x^2}\, + \,{y^2}\, - \,2y\, - \,3\, = \,0$ from the point $P(3, 4)$. Which of the following alternative(s) is/are correct ?

  1. The power of point $P(3, 4)$ with respect to circle $S=0$ is $14$.

  2. The angle between tangents from $P(3, 4)$ to the circle $S=0$ is $\frac{\pi }{3}$

  3. The equation of circumcircle of $\Delta PAB\,$ is ${x^2}\, + \,{y^2}\, - \,3x\, - \,5y\, + \,4\, = 0$

  4. The area of quadrilateral $PACB$ is $3\sqrt 7 $ square units where C is the centre of circle $S = 0$.


Correct Option: A

If $OA$ and $OB$ are the tangents to the circle ${x}^{2}+{y}^{2}-6x-8y+21=0$ drawn from the origin $O$, then $AB$ equals 

  1. ${ \dfrac { 17 }{ 3 } } $

  2. $\dfrac { 4 }{ 5 } \sqrt { 21 }$

  3. $11$

  4. None of these


Correct Option: B
Explanation:
equation of circle $\Rightarrow x^2+y^2-6x-8y+21=0$
radius $\Delta =\sqrt {9+16-21}=2$
$AB$ is chord of contact & its equation is
$x. x _1 +yy _1+9(x+x _1)+f(y+y _1)+c=0$
$(x _1, y _1)=(0,0)$
$0+0-3(x+0)-4(y+0)+21=0$
$3x+4y-21=0$
Perpendicular distance from $(3, 4)$ to line $l _1$
$CM=\dfrac {3(3)+4(4)-21}{\sqrt {9+16}}=\dfrac {4}{5}$
$AM=\sqrt {AC^2-CH^2}=\sqrt {4-\dfrac {16}{25}}=\dfrac {2}{5}\sqrt {21}$
$AB=2AM=\dfrac {4}{5}\sqrt {21} $ 
option $B$ is correct.


If 't$ _{1}$','t$ _{2}$','t$ _{3}$'are the lengths of the tangents drawnfrom centre of ex-circle to the circum circle of the $ \Delta A B C $, then- $ \frac { 1 } { t _ { 1 } ^ { 2 } } + \frac { 1 } { t _ { 2 } ^ { 2 } } + \frac { 1 } { t _ { 3 } ^ { 2 } } = $

  1. $ \frac { a b c } { a + b + c } $

  2. $ \frac { a b c } { a - b + c } $

  3. $ \frac { 2 a b c } { a + b + c } $

  4. None of these


Correct Option: A

Consider a circle $x^2+y^2=3$. Secants are drawn from (-2,0) to the circle which make an intercept of $2\sqrt{2}$ units on the circle. Identify the correct statements ?

  1. The combined equation of the secants is $x^2-4y^2+2x+1=0$

  2. The combined equation of the secants is $x^2-4y^2+x+1=0$

  3. Angle between the secants is $60^{o}$

  4. Angle between the secants is $30^{o}$


Correct Option: A

From a point P outside of a circle with center at O, tangent segments $PA$ and $PB$ are drawn. If $ \dfrac { 1 }{ \left( { OA }^{ 2 } \right)  } +\dfrac { 1 }{ \left( { PA }^{ 2 } \right)  } =\dfrac { 1 }{ 16 } $ then the length of the chord AB is ..

  1. $7$

  2. $8$

  3. $6$

  4. $5$


Correct Option: A

Parallelogram circumscribing a circle is a ?

  1. Rectangle

  2. Rhombus

  3. Square

  4. kite


Correct Option: B