Tag: maths

Questions Related to maths

Curves $a{ x }^{ 2 }+2hxy-2gx-2fy+c=0$ and $a'{ x }^{ 2 }-2hxy+(a'+a-b){ y }^{ 2 }-2g'x-2f'y+c=0\quad $ intersect at four concyclic points $A,B,C$ and $D$. If $P$ is the point $\left( \cfrac { g'+g }{ a'+a } ,\cfrac { f'+f }{ a'+a }  \right) $, then which of the following is/are true

  1. $P$ is also concyclic with points $A,B,C,D$

  2. $PA,PB,PC$ in G.P

  3. ${ PA }^{ 2 }+{ PB }^{ 2 }+{ PC }^{ 2 }=3{ PD }^{ 2 }\quad $

  4. $PA,PB,PC$ in AP


Correct Option: A

The four straight lines given by the equations $12x^2+7xy-12y^2=0$ and $12x^2+7xy-12y^2-x+7y-1=0$ lie along the sides of a 

  1. Square

  2. Rhombus

  3. Rectangle

  4. None of these


Correct Option: A
Explanation:

taking $y$ is constant and finding the value of$x$ by roots formula.


$12x^2+(7y)x-12y^2=0$

$x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}=\dfrac{(7y)-\sqrt{(7y)^2-4(-12)y^212}}{2\times 12}$

$\dfrac{\Rightarrow x=-7y\pm\sqrt{49y^2+576y^2}{}}{2\times 12}$

$\Rightarrow 24x=-7y\pm \sqrt{625}y$

$\Rightarrow 24xy=-7y\pm 25y$.........(1)

Again $12x^2+(7y-1)x+(-12y^2-1+7y)=0$

$\therefore x=\dfrac{-(7y-1)\pm\sqrt{(7y-1)^2-4}(12)(7y-1-12y^2)}{24}$

$\Rightarrow x=\dfrac{1-7y\pm\sqrt{49y^2+1-14y-336y+48+576y^2}}{24}$

$\Rightarrow 24x=1-7y\pm\sqrt{625y^2-350y+49}$

$\Rightarrow 24x=1-7y\pm (25y-7)$

$\Rightarrow x=\dfrac{1-7y\pm 25y-7}{24}$........(ii)

from (i) and (ii) we can clearly see co.efficient of $x$ and $y$ are same so slope are sample $m _1=\dfrac{24}{18},m _2=-\dfrac{24}{32}$

So $m _1m _2= -1$

$\therefore $ it is a square

$3x^2+8xy-3y^2=0$ represents a pair of lines AB and BC, whereas the equation $3x^2+8xy-3y^2+2x=4y-1=0$ represents two lines CD and DA.
Answer the given question.
The equation of the CD is,

  1. $x+3y+1=0$

  2. $x+3y-1=0$

  3. $x-3y+1=0$

  4. $x+y+1=0$


Correct Option: A

The value of $k$ so that the equation $12{x}^{2}-10{y}^{2}+11x-5y+k=0$ may represent a pair of straight lines is

  1. $k=\dfrac{91}{48}$

  2. $k=\dfrac{94}{43}$

  3. $k=\dfrac{83}{23}$

  4. None of these


Correct Option: A
Explanation:

$\Rightarrow$  The given equation is $12x^2-10y^2+11x-5y+k=0$

$\Rightarrow$  Comparing it with $ax^2+2hxy+by^2+2gx+2fy+c=0$
$\Rightarrow$  $a=12,\,b=-10,\,h=o,\,g=\dfrac{11}{2},\,f=\dfrac{-5}{2},\,c=k$
$\Rightarrow$  The condition is $abc+2fgh-af^2-bg^2-ch^2=0$
$\Rightarrow$  $12\times (-10)\times k+2\times (\dfrac{-5}{2})\times\dfrac{11}{2}\times 0-12\times (\dfrac{-5}{2})^2-(-10)\times (\dfrac{11}{2})^2-k\times (0)^2=0$
$\Rightarrow$  $-120k+0-75+\dfrac{605}{2}-0=0$
$\Rightarrow$  $\dfrac{-240k-150+605}{2}=0$
$\Rightarrow$  $-240k+455=0$
$\Rightarrow$  $k=\dfrac{455}{240}$
$\therefore$   $k=\dfrac{91}{48}$

$\begin{array}{l}\\left( {3x - 2y} \right)\left( {2x + y} \right)=\end{array}$

  1. $ =6{{x}^{2}}-xy+2{{y}^{2}}\,\, $

  2. $ =6{{x}^{2}}+xy-2{{y}^{2}}\,\, $

  3. $ =6{{x}^{2}}-xy-2{{y}^{2}}\,\, $

  4. $ =6{{x}^{2}}+xy+2{{y}^{2}}\,\, $


Correct Option: C
Explanation:

Part (1)

$ \left( a-2 \right)\left( a+2 \right) $

${{a}^{2}}-4$ 

Part (2)

$ \left( 3x-2y \right)\left( 2x+y \right) $

$ =6{{x}^{2}}+3xy-4xy-2{{y}^{2}} $

$ =6{{x}^{2}}-xy-2{{y}^{2}}\,\, $

Hence, this is the answer.

If the pair of lines ${x^2}\, + \,2xy\, + \,a{y^2}\, = \,0$ and $a{x^2}\, + \,2xy\, + \,{y^2}\, = \,0$ have exactly one line in common, then joint equation of the other two lines is given by

  1. $3{x^2}\, + \,8xy\, - 3\,{y^2}\, = \,0$

  2. $3{x^2}\, + \,10xy\, + 3\,{y^2}\, = \,0$

  3. ${y^2}\, + \,2xy\, - 3\,{x^2}\, = \,0$

  4. ${x^2}\, + \,2xy\, - 3\,{y^2}\, = \,0$


Correct Option: B

The lines $2x^2+6xy+y^2=0$ are equally inclined to the lines $4x^2+18xy+by^2=0$ when $b=1$

  1. True

  2. False


Correct Option: A
Explanation:
Consider the equation $2{x}^{2}+6xy+{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{2-1}=\dfrac{xy}{3}$      
$\dfrac{{x}^{2}-{y}^{2}}{1}=\dfrac{xy}{3}$
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}$         .......$(1)$
Consider the equation $4{x}^{2}+18xy+b{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{4-b}=\dfrac{xy}{9}$ 
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{4-b}{9}$      .......$(2)$
From $(1)$  and $(2)$ we have
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,4-b=\dfrac{9}{3}=3$
$\Rightarrow\,-b=3-4$
$\Rightarrow\,b=1$
$\therefore\,b=1$

Find the equations of the two straight lines drawn through the point $(0,a)$ on which the perpendicular let fall from the point $(2a,2a)$ are each of length $a$.
 then equation of the straight line joining the feet of these perpendiculars is $y+2x=5a$

  1. True

  2. False


Correct Option: A

If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2x+3y=6$, then area of the triangle so formed is?

  1. $36/13$

  2. $12/17$

  3. $13/5$

  4. $17/3$


Correct Option: A
Explanation:

As the lines are perpendicular and form an isosceles triangle the other two angles must be $45^\circ$

Let the slope of the line be m
$tan 45^\circ = \Bigg|\cfrac{-\cfrac{2}{3}-m}{1-\cfrac{2m}{3}}\Bigg| = 1$
$m = -5$ and the other line slope =$\cfrac{1}{5}$
Lines 
$y +5x= 0$ and $5y =x$
Intersection points $(0,0)$ , $(-\cfrac{6}{13} , \cfrac{30}{13})$ and $(\cfrac{30}{13} , \cfrac{6}{13})$
Perpendicular distance from origin to line $2x+3y=6$ is $\cfrac{|0+0-6|}{\sqrt{2^2+3^2}} = \cfrac{6}{\sqrt{13}}$
Distance between the points are $\sqrt{\Bigg(\cfrac{36}{13}\Bigg)^2+\Bigg(\cfrac{24}{13}\Bigg)^2} = \cfrac{\sqrt{1872}}{13} = \cfrac{12\sqrt{13}}{13}$
Area = $\cfrac{1}{2} \times \cfrac{12\sqrt{13}}{13} \times \cfrac{6}{\sqrt{13}} = \cfrac{36}{13}$ 

The line $x+3y-2=0$ bisects the angle between a pair of straight lines of which one has equation $x-7y+5=0$. The equation of the other line is-

  1. $3x+3y-1=0$

  2. $x-3y+2=0$

  3. $5x+5y-3=0$

  4. $none$


Correct Option: C
Explanation:
we have
$L _1 =x+3y-2=0---(1)$

$L _2=x-7y+5=0---(2)$

now,

we know that

family of line through the given lines is

$L=L _2+\lambda L _2=0$

$=x-7y+5+\lambda (x+3y-2)=0---(3)$

Distance of any point ray $(2,0)$ on the line $x+3y-2=0$ from the lime 
$x-7y+5=0$ and the line $L=0$ must be same
so,

$\Rightarrow \ \left |\dfrac {2+5}{\sqrt {50}}\right | = \left |\dfrac {2+2\lambda +5-2\lambda}{\sqrt {(1+\lambda)^2+(3\lambda -7)^2}}\right|$

$\Rightarrow \ \dfrac {7}{\sqrt {50}}=\dfrac {7}{\sqrt {(1+\lambda)^2 +(3\lambda -7)^2}}$

$\Rightarrow \ 10\lambda^2-40\lambda =0$

$10\lambda (\lambda -4)=0$

$\lambda =0,\ \lambda =4$

then, put $\lambda =4$ in equation $(3)$ and we get

$L=x-7y+5+4(x+3y-2)=0$

$L=x-7y+5+4x+12y-8=0$

$L=5x+5y-3=0$

Hence this is the answer.