Tag: maths

Questions Related to maths

The equation of tangent to the circle ${x^2} + {y^2} = 36$ which are incline at the angle of  ${45^ \circ }$ to the $x-$axis are 

  1. $x + y = \pm \sqrt 6 $

  2. $x = y \pm 3\sqrt 2 $

  3. $y = x \pm 6\sqrt 2 $

  4. None of these


Correct Option: A

A tangent drawn from the point (4, 0) to the circle $\displaystyle x^{2}+y^{2}=8 $ touches it at a point A in the first quadrant. The coordinates of another point B on the circle such that $AB$ = 4 are

  1. $(2, -2)$

  2. $(-2, 2)$

  3. $\displaystyle \left ( -2\sqrt{2},0 \right ) $

  4. $\displaystyle \left ( 0,-2\sqrt{2} \right ) $


Correct Option: A
Explanation:

$x^2  + y^2 = (2\sqrt 2)^2 , C = (0,0) , r = 2 \sqrt 2$

Let $y = mx + 2\sqrt 2 \sqrt{m^2 + 1}$ be a tangent

To find the tangent through $(4,0)$ substitute into the equation

$\implies 0 = 4m +2\sqrt 2 \sqrt{m^2 + 1}$

$\implies 16m^2 = 8(m^2 + 1)$

$\implies m = -1$

Equation is

$y = -x + 4$

Substituting in circle equation

$x^2 + (-x + 4)^2 = 8$

$\implies 2x^2 – 8x + 8 = 0$

$\implies x = 2 \implies y = 2$

$A = (2,2)$

Any point on the circle is given be$ (2\sqrt2 \cos \theta, 2\sqrt2 \sin \theta )$

Let B = $(2\sqrt2 \cos \theta _1, 2\sqrt2 \sin \theta _1)$

$AB = 4 \implies AB^2 = 16$

$\implies (2\sqrt2 \cos \theta _1, -2)^2 + (2\sqrt2 \sin \theta _1 - 2)^2 = 16$

$\implies 8 + 4 + 4 – 4\sqrt 2(\cos \theta _1 + \sin \theta _1) = 16$

$\implies \sin \theta _1 + \cos \theta _1 = 0$

$\theta _1 = \dfrac{-\pi}{4}$

$B = (2\sqrt 2 \times\dfrac{1}{\sqrt 2} 2\sqrt 2 \times\dfrac{-1}{\sqrt 2})  = (2,-2)$

A parabola $y = ax^2 + bx + c$ crosses the x-axis at $(\alpha, 0)$ $(\beta, 0)$ both to the right of the origin. A circle also passes through these two points. The length of the tangent from the origin to the circle is

  1. $\displaystyle \sqrt{\frac{bc}{a}}$

  2. $ac^2$

  3. $\displaystyle \frac{b}{a}$

  4. $\displaystyle \sqrt{\frac{c}{a}}$


Correct Option: D
Explanation:

$OT$ is a tangent and $OAB$ is a secant 


we know that

$OT^2 =OA.OB$

         $=\alpha\beta$

         $=\dfrac{c}{a}$ (Since $\alpha,\beta $ are the roots of $y=ax^2+bx+c$)

$\Rightarrow OT=\sqrt{\dfrac{c}{a}}$

From a point $R(5, 8)$ two tangents $RP$ and $RQ$ are drawn to a given cirlce $S = 0$ whose radius is $5$. If circumcentre of the triangle PQR is $(2, 3)$, then the equation of circle $S= 0$ is

  1. $x^2 + y^2 + 2x + 4y - 20 = 0$

  2. $x^2 + y^2 + x + 2y - 10 = 0$

  3. $x^2 + y^2 - x - 2y - 20 = 0$

  4. $x^2 + y^2 - 4x - 6y - 12 = 0$


Correct Option: A

The radius of the circle touching the straight lines $x-2y-1=0$ and $3x-6y+7=0$ is

  1. $\cfrac { 3 }{ \sqrt { 5 } } $

  2. $\cfrac { \sqrt { 5 } }{ 3 } $

  3. $\sqrt { 5 } $

  4. $\cfrac { 1 }{ \sqrt { 2 } } $


Correct Option: B
Explanation:

Diameter of circle=distance of the point (1,0)
from $3x-6y+7=0$
$\therefore$ $\cfrac { 3(1)-6(0)+7 }{ \sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( -6 \right)  }^{ 2 } }  } =\cfrac { 10 }{ \sqrt { 45 }  } =\cfrac { 2 }{ 3 } \sqrt { 5 } $
Now, radius of circle $=\cfrac { 1 }{ 2 } \left( \cfrac { 2 }{ 3 } \sqrt { 5 }  \right) =\cfrac { \sqrt { 5 }  }{ 3 } $

For what positive value(s) of K will the graph of the equation $2x + y = K$ be tangent to the graph of the equation $x^2+ y^2= 45$?

  1. 5

  2. 10

  3. 15

  4. 20

  5. 25


Correct Option: C
Explanation:
  • The radius of circle is $\sqrt{45} = 3\sqrt5$ , center of circle is $(0,0)$
  • For the equation to be tangent to circle , the distance from center of circle to given line must be equal to radius of circle
  • So we get $k/\sqrt5 = 3\sqrt5$ , which gives $k=15$

AB and CD are two chords of a circle which when produced to meet at a point P such that AB = 5 cm, AP = 8 cm and CD = 2 cm then PD = 

  1. 12 cm

  2. 5 cm

  3. 6 cm

  4. 4 cm


Correct Option: D
Explanation:

By intersecting secant theorem,

$PA$$\times$$PB$ = $PD$$\times$$PC$
$8$cm$\times$$3$cm = PD$\times$(PD+CD)
24${ cm }^{ 2 }$ = PD$\times$(PD+2)
${ PD }^{ 2 }$ $+ 2PD - 24 =0$
On Solving the above quadratic equation, we get
${ PD }^{ 2 }$$+6PD-4PD-24=0$
$(PD+6)$$\times$$(PD-4)=0$
$PD=4$cm & $-6$cm
So, $PD= 4$cm is the real solution

If the line $\displaystyle ax+by + c =0$ touches the circle $\displaystyle x^2 + y^2 -2x = \frac{3}{5}$ and is normal to the circle $\displaystyle x^2 + y^2 + 2x - 4y + 1 =0$, then $(a,b)$ are

  1. $(1, 3)$

  2. $(3, 1)$

  3. $(1, 2)$

  4. $(2, 1)$


Correct Option: B
Explanation:

$x^2+y^2-2x=\dfrac {3}{5}\Rightarrow (x-1)^2+y^2=\dfrac {8}{5}$

So, Radius, $R=2\sqrt {\dfrac {2}{5}}$ and it's center is at $(1,0)$

ie, Distance, $d$ from the circle to $ax+by+c=0$ is,
$d=\dfrac {a\times 1+b\times 0+c}{\sqrt{a^2+b^2}}=\dfrac {a+c}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}\longrightarrow (1)$ (Inorder to satisfy the criterion of a tangent)

$x^2+y^2+2x-4y+1=0 \Rightarrow (x+1)^2+(y-2)^2=4$
So, It's center is at $((-1),2)$
As $ax+by+c=0$ is normal to the circle, it should go through the centre of the circle.
ie, $a-2b=c$ and $(y-2)=m(x+1)\longrightarrow (2)$

Substituting $c$ in (1),
$\dfrac {a+(a-2b)}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}$
$\Rightarrow \dfrac {a-b}{\sqrt {a^2+b^2}}=\sqrt {\dfrac {2}{5}}$

So, we can say $(a-b)=k\sqrt {2}$ and $a^2+b^2=5k^2$ foe some constant $k$.
$a^2+b^2-(a-b)^2=2ab=5k^2-2k^2=3k^2$
$(a-b)^2+4ab=(a+b)^2=6k^2+2k^2=8k^2\Rightarrow (a+b)=2k\sqrt{2}$
$a=\dfrac {1}{2}((a+b)+(a-b))=\dfrac {1}{2}(3k\sqrt{2})$
$b=\dfrac {1}{2}((a+b)-(a-b))=\dfrac {1}{2}(k\sqrt {2})$

Slope of the line, $m=\dfrac {dy}{dx}$
$\dfrac {d}{dx}(ax+by+c)=0\Rightarrow a+b\dfrac {dy}{dx}=0$
ie, $m=\dfrac {(-a)}{b}=(-3)$ (from above equations of $a$ and $b$)

Substituting the slope in (2),
$(y-2)=(-3)(x+1)\Rightarrow 3x+y+1=0$

Compairing with general equation given,
$(a,b)=(3,1)$

Option B is the correct answer.

Find $a$ if the distance between $(a , 2)$ and $(3 , 4)$  is $8 $

  1. $ 3 \, \pm \, \sqrt {60}$

  2. $ 4 \, \pm \, \sqrt {60}$

  3. $ 3 \, \pm \, \sqrt {6}$

  4. None of these


Correct Option: A
Explanation:

By square of distance formual:


$8^2=(3-a)^2+(4-2)^2$

$=>64=a^2-6a+13$

$=>a^2-6a-51=0$

solving the quadratic we get:

$a=(3+\sqrt(60)$ or $(3-\sqrt(60))$.

The equation of the line which passes through $(0,0)$ and $(1,1)$ is ____________

  1. $y=x$

  2. $y=-x$

  3. $y=1$

  4. $x=1$


Correct Option: A
Explanation:

The equation of the line which passes through (0,0) and (1,1) is y=x

As we know, the two points are $(0,0) (1,1)$
slope $ m$ $=\dfrac { { y } _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-{ x } _{ 1 } } $  $=\dfrac { 1-0 }{ 1-0 } =1$
Standard equation of the line is $y-{ y } _{ 1 }=m\left( x-{ x } _{ 1 } \right) $
Substituting value of $m =1 $ and point $(x,y) =  (0,0)$ we get:
$y-0=1\left( x-0 \right) $
 $y=x$ is the required equation of the line