Tag: maths
Questions Related to maths
If the ellipse $\displaystyle \frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$ meets the ellipse $\displaystyle \frac{x^{2}}{1}+\frac{y^{2}}{a^{2}}=1$ in four distinct points and $\displaystyle a^{2} = b^{2} -4b + 8$, then $b$ lies in
Let $A(z _a), B(z _b), C(z _c)$ are three non-collinear points where $z _a=i, z _b=\dfrac{1}{2}+2i, z _c=1+4i$ and a curve is $z=z _a\cos^4t+2z _b\cos^2t \sin^2t+z _c\sin^4t(t\in R)$
A line bisecting AB and parallel to AC intersects the given curve at
If the line $y=x\sqrt{3}$ cuts the curve $x^{3}+y^{3}+3xy+5x^{2}+3y^{2}+4x+5y-1=0$ at the points $A, B$ and $C$,then $OA. OB. OC$ is equal to (where '$O$' is origin)
The pair of lines $6{ x }^{ 2 }+7xy+\lambda { y }^{ 2 }=0\left( \lambda \neq -6 \right) $ forms a right angled triangle with $x+3y+4=0$ then $\lambda=$
Let $y=f(x)$ and $y=g(x)$ be the pair of curves such that
(i) The tangents at point with equal abscissae intersect on y-axis.
(ii) The normal drawn at points with equal abscissae intersect on x-axis and
(iii) curve f(x) passes through $(1, 1)$ and $g(x)$ passes through $(2, 3)$ then: The curve g(x) is given by.
What is the value of $7.854 \times 10$ ?
Solve the following:
$58.326 \times 463.9 \times 0.0081$ is same as
$5.\overline { 07 } \quad \times 10=y$, then the value of $y$ is
If we write November 8, 1988, as 8.11.88, we see $8\times11=88$. How many such days are in 1972?