Tag: maths

Questions Related to maths

If the ellipse $\displaystyle \frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$ meets the ellipse $\displaystyle \frac{x^{2}}{1}+\frac{y^{2}}{a^{2}}=1$ in four distinct points and $\displaystyle a^{2} = b^{2} -4b + 8$, then $b$ lies in

  1. $(- \infty ,0)$

  2. $(- \infty ,2)$

  3. $(2,\infty)$

  4. $[2, \infty)$


Correct Option: B
Explanation:
Given,
$\displaystyle \dfrac{x^{2}}{1}+\dfrac{y^{2}}{a^{2}}=1$   -- (i)

$\displaystyle \dfrac{x^{2}}{4}+\dfrac{y^{2}}{b^{2}}=1$   -- (ii) 
are the two equations of the ellipses

Eliminating $y^2$ from both the equations we get, 
$ x^2 \left( \dfrac{b^2-4a^2}{4a^2b^2} \right) =  \dfrac{b^2-a^2}{a^2b^2} $

$\dfrac{x^2}{4}  = \dfrac{b^2-a^2}{b^2-4a^2} $

Substituting the value of $a^2$ we get, 
$ \dfrac{x^2}{4} = \dfrac{4b-8}{-3b^2+16b-32} $

The denominator is always negative as the discriminant of the expression is negative and the coefficient of $b^2$ is also negative. 

Hence, $4b-8 < 0$
$\Rightarrow b <2 $

Eliminating $x^2$ from the two equations we get, 

$y^2 \left ( \dfrac{4a^2-b^2}{a^2b^2} \right) = 3 $

$ \dfrac{y^2}{3} = \dfrac {a^2b^2} { 4a^2 - b^2} $

Hence, $4a^2 -b^2 >0 $
$\Rightarrow 3b^2 -16b +32 > 0 $. 

The discriminant of the expression is less than 0 and the coefficient of $b^2$ is greater than 0. Hence, the inequality holds true for all values of $b$. 

Hence the common set of the values of $b$ is $ (-\infty,  2) $. 
Hence, option B is correct

Let $A(z _a), B(z _b), C(z _c)$ are three non-collinear points where $z _a=i, z _b=\dfrac{1}{2}+2i, z _c=1+4i$ and a curve is $z=z _a\cos^4t+2z _b\cos^2t \sin^2t+z _c\sin^4t(t\in R)$
A line bisecting AB and parallel to AC intersects the given curve at

  1. Two distinct points

  2. Two co-incident points

  3. Only one point

  4. No point


Correct Option: C
Explanation:

${ z } _{ a }=i\Rightarrow A\left( 0,1 \right) $
${ z } _{ b }=\cfrac { 1 }{ 2 } +2i\Rightarrow B\left( \cfrac { 1 }{ 2 } ,2 \right) $
${ z } _{ c }=1+4i\Rightarrow C\left( 1,4 \right) $
Let D be the midpoint of AB
$D=\left[ \cfrac { 0+\cfrac { 1 }{ 2 }  }{ 2 } ,\cfrac { 1+2 }{ 2 }  \right] $
$D\left[ \cfrac { 1 }{ 4 } ,\cfrac { 3 }{ 2 }  \right] $
Line bisecting AB at D is parallel to AC
$\therefore $ Slope of AC $=\cfrac { 4-1 }{ 1-0 } =3$
Equation of line bisecting AB is $y-\cfrac { 3 }{ 2 } =3\left( x-\cfrac { 1 }{ 4 }  \right) $

$\Rightarrow \cfrac { 2y-3 }{ 2 } =\cfrac { 12x-3 }{ 4 } $
$\Rightarrow 4y-6=12x-3$
$\Rightarrow 12x-4y+3=0$
$\Rightarrow y=\cfrac { 12x+3 }{ 4 } $
Equation of curve is $y={ \left( x+1 \right)  }^{ 2 }$
$\cfrac { 12x+3 }{ 4 } ={ x }^{ 2 }+2x+1$
$4{ x }^{ 2 }-4x+1=0$
${ \left( 2x-1 \right)  }^{ 2 }=0$
$x=\cfrac { 1 }{ 2 } ,\quad y=\cfrac { 9 }{ 4 } $
$\left( \cfrac { 1 }{ 2 } ,\cfrac { 9 }{ 4 }  \right) \Rightarrow $ given line and curve intersect only at one point

If the line $y=x\sqrt{3}$ cuts the curve $x^{3}+y^{3}+3xy+5x^{2}+3y^{2}+4x+5y-1=0$ at the points $A, B$ and $C$,then $OA. OB. OC$ is equal to (where '$O$' is origin)

  1. $\dfrac{4}{13}\left ( 3\sqrt{3}-1 \right )$

  2. $\left ( 3\sqrt{3}-1 \right )$

  3. $\dfrac{1}{\sqrt{3}}\left ( 2+7\sqrt{3} \right )$

  4. $\dfrac{4}{13}\left ( 3\sqrt{3}+1 \right )$


Correct Option: A
Explanation:

Coordinates of a point on the line $y=x\sqrt{3}$ at a distance r from origin 
is $\left ( r\cos \theta ,r\sin \theta  \right )$
$\therefore \tan \theta =\sqrt{3}$
$\therefore \left ( \dfrac{r}{2},\dfrac{r\sqrt{3}}{2} \right )$ lies on the given curve
$\Rightarrow  \displaystyle \frac{r^{3}}{8}+\frac{r^{3}.3\sqrt{3}}{8}+3.\frac{r}{2}.\frac{r\sqrt{3}}{2}+5.\frac{r^{2}}{4}+3.\frac{r^{2}.3}{4}+4.\frac{r}{2}+5.\frac{r\sqrt{3}}{2}-1=0$

$\Rightarrow \left (\displaystyle  \frac{1+3\sqrt{3}}{8} \right )r^{3}+\dfrac{r^{2}}{4}\left ( 3\sqrt{3}+14 \right )+\dfrac{r}{2}\left ( 5\sqrt{3}+4 \right )-1=0$

$\Rightarrow r _{1}.r _{2}.r _{3}=\dfrac{8}{3\sqrt{3}+1}$

$=\dfrac{8}{27-1}\times \left ( 3\sqrt{3}-1 \right )$

$=\dfrac{4}{13} \left ( 3\sqrt{3}-1 \right )$

The pair of lines $6{ x }^{ 2 }+7xy+\lambda { y }^{ 2 }=0\left( \lambda \neq -6 \right) $ forms a right angled triangle with $x+3y+4=0$ then $\lambda=$

  1. $3$

  2. $-3$

  3. $1/3$

  4. $-1/3$


Correct Option: A
Explanation:

Given line is $L: x+3y+4=0$


$\implies  y=-\dfrac{1}{3}(x+4)$

Slope of this line is $m=\dfrac{-1}{3}$

Now, $6x^2+7xy+\lambda y^2=0$ $(\lambda\neq 6)$

$x^2+\dfrac{7}{6}xy+\dfrac{\lambda}{6}y^2=0$

$\implies (x+ay)(x+by)=0$

$\implies x+ay=0$ and $x+by=0$ are the two equations with 

$a+b=\dfrac{7}{6}$    and $ab=\dfrac{\lambda}{6}$

Slope of these lines are $m _1=\dfrac{-1}{a}$ and $m _2=\dfrac{-1}{b}$

Now, $m _1m _2=\dfrac{1}{ab}=\dfrac{\lambda}{6}\neq -1$  since $\lambda\neq -6$

Hence the lines $x+ay=0$ and $x+by=0$ are not prependicular.

From these two only one is normal to $L$.

Let $x+ay$ is normal to $L$.

$\implies m _1m=-1$

$\implies \dfrac{1}{3a}=-1$

$\implies a=\dfrac{-1}{3}$

Now, $a+b=\dfrac{7}{6}\implies b=\dfrac{7}{6}-\dfrac{-1}{3}$

$\implies b=\dfrac{3}{2}$

Now, $ab=\dfrac{\lambda}{6}$

$\implies \lambda=6ab=6\times \dfrac{-1}{3}\times \dfrac{3}{2}$

$\implies \lambda=-3$

Answer-(B)

Let $y=f(x)$ and $y=g(x)$ be the pair of curves such that
(i) The tangents at point with equal abscissae intersect on y-axis.
(ii) The normal drawn at points with equal abscissae intersect on x-axis and
(iii) curve f(x) passes through $(1, 1)$ and $g(x)$ passes through $(2, 3)$ then: The curve g(x) is given by.

  1. $x-\displaystyle\frac{1}{x}$

  2. $x+\displaystyle\frac{2}{x}$

  3. $x^2-\displaystyle\frac{1}{x^2}$

  4. $(x+\displaystyle\frac{1}{x})$$(x+\displaystyle\frac{2}{x})$


Correct Option: A
Explanation:
$y=f(x)$ and $y=g(x)$
(i)
$\dfrac{dy}{dy}=c\Rightarrow c _{1}=1$
for second curve 
$\dfrac{dy}{dy}=c _{2}\Rightarrow c _{2}=1$

(ii)
$\dfrac{dy}{dx}=d _{1}---(1)$
for second curve 
$\dfrac{dy}{dx}=d _{2}----(2)$

(iii)
From eq (1) and (2)
$d _{1}=2=d _{2}$

$\int _{1}^{2} (g(x)-f(x))d(x)$

$\int _{1}^{2} (4-2)d(x)$

$2\int _{1}^{2} d(x)$

$2(2-1)=2$

SO $g(x)=x-\dfrac{1}{x}$

What is the value of $7.854 \times 10$ ?

  1. $785.4$

  2. $78.54$

  3. $7854$

  4. $78540$


Correct Option: B
Explanation:

$7.854$

  $\times 10$
$\overline{78.540}$

Hence, $7.854 \times 10 = 78.54$

Solve the following:

$0.05 \times 0.09 \times 5 $ 

  1. $0.025$

  2. $0.225$

  3. $0.005$

  4. $0.0225$


Correct Option: D
Explanation:

$0.05 \times 0.09 \times 5$

$=0.05 \times 0.45$
$=0.0225$

$58.326 \times 463.9 \times 0.0081$ is same as 

  1. $5.8326 \times 4.639 \times 8.1$

  2. $5.8326 \times 4.639 \times 0.81$

  3. $58326 \times 4639 \times 0.0000081$

  4. None of these


Correct Option: A
Explanation:

In option A,

$58.326\div10 = 5.8326$
$463.9\div100 = 4.639$
$0.0081\times1000 = 8.1$

Multiplication by $1000$ and Division by $10\times100 = 1000$ gives the same result.

Answer : $5.8326 \times 4.639 \times 8.1$

$5.\overline { 07 } \quad \times 10=y$, then the value of $y$ is

  1. $50.\overline { 07 } $

  2. $50.0\overline { 7 } $

  3. $50.7\overline { 07 } $

  4. $50.70$


Correct Option: C
Explanation:

$5.\overline { 07 } \quad \times 10=50.7070707=50.7\overline { 07 } $

If we write November 8, 1988, as 8.11.88, we see $8\times11=88$. How many such days are in 1972?

  1. 6

  2. 4

  3. 3

  4. 2


Correct Option: A
Explanation:

Multiples of 72 = 2,4,6,8,9,12,18,24,36,72
But in a year we have only 12 months and in a month we have only 30 days
So We have
$24.3.72 = 24\times 3 = 72$
$18.4.72 = 18\times 4 = 72$
$12.6.72= 12\times6 = 72$
$9.8.72 = 9\times8 = 72$
$8.9.72 = 8\times 9 = 72$
$6.12.72 = 6\times 12 = 72$