Tag: maths

Questions Related to maths

State True/False.
$1.07\times 0.02=0.0214$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $1.07 \times  0.02$


Step I: $107 \times 2 = 214$


Step II: Total number after decimal = 4


So, $1.07 \times 0.02 = 0.0214$

Hence , given statement is true

State True/False.
$10.05\times 1.05=10.5525$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $10.05 \times  1.05$


Step I: $1005 \times  105 = 105525$

Step II: Total number after decimal $= 4$

So, $10.05 \times  1.05= 10.5525$

Hence , given statement is true

Solve the following:
$101.01\times 0.01$ 


Ans : $1.0101$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $101.01 \times 0.01$


Step I: $10101 \times  001 = 10101$


Step II: Total number after decimal $= 4$

So, $101.01 \times 0.01 = 1.0101$

Hence , given statement is true

State true or false
$3.68\times 5=18.4$

  1. True

  2. False


Correct Option: A
Explanation:

Given, 3.68 x 5 = 18.4

Step 1 : 368 x 5 = 1840
Step 2 : Total number after decimal = 2
So, 3.68 x 5 = 18.40
Could be written as 18.4
Hence given statement is true.

What is the missing value in the given mathematical statement?
$0.25\times 12 = 0.25 \times 3 + 0.25 \times 3 + 0.25\times$ ________.

  1. $2$

  2. $3$

  3. $6$

  4. $8$


Correct Option: C
Explanation:

Using distributive property, we have
$0.25\times 12 = 0.25 \times (3 + 3 + 6)$
$\Rightarrow 0.25\times 12 = 0.25 \times 3 + 0.25\times 3 + 0.25 \times 6$.

$5.25\times 9.1\times 0.0\times 8.26=$ ____________.

  1. $47.775$

  2. $0.1176$

  3. $0$

  4. $1$


Correct Option: C
Explanation:

The value of $5.25\times 9.1\times 0.0\times 8.26$ is

$(47.775)\times (0)$
$=0$

The value of $\dfrac{0.008\times 0.01\times 0.0072}{(0.12\times 0.0004)}$ is:

  1. $0.012$

  2. $0.12$

  3. $1.02$

  4. $1.2$


Correct Option: A
Explanation:

Given expression 


$\dfrac{0.008\times 0.01\times 0.0072}{(0.12\times 0.0004)}$ 

$=\dfrac {0.008\times0.01\times0.0072}{0.000048}$

$=0.00008\times\dfrac{0.0072}{0.000048}$

$=\dfrac{8}{48}\times\dfrac{72}{1000}$

$=0.012$

Find the value of following expression:
$\dfrac{(0.1667)(0.8333)(0.3333)}{(0.2222)(0.6667)(0.1250)}$

  1. $2$

  2. $2.40$

  3. $2.43$

  4. $2.50$

  5. $None\ of\ these$


Correct Option: A

Number of zero's in the product of
$5 \times 10 \times 25 \times 40 \times 50 \times 55 \times 65 \times 125 \times 80 $

  1. $8$

  2. $9$

  3. $12$

  4. $13$


Correct Option: B
Explanation:

$5 \times 10 \times 25 \times 40 \times 50 \times 55 \times 65 \times 125 \times 80 $
$= 5 \times 2 \times 5 \times 5^2 \times 2^3 \times 5 \times 2 \times 5^2 \times 11 \times 5 \times 13 \times 5 \times 5^3 \times 2^4 \times 5$
$= 2^9 \times 5^{13}\times 11 \times 13 = (2 \times 5)^9 \times 5^4 \times 11 \times 13$


As we know that zeroes are formed by the product of a $2$ and a $5$ i.e. $2$ x $5$. 

Therefore, number of zeroes depends on the number of pairs of $2$'s and $5$'s that can be formed in the given product. 

Since $9$ pairs of $2$'s and $5$'s are formed in the given product, hence there will be $9$ zeroes in the given product.

If u, v and w are the digits of decimal system, then the rational number represented by 0.uwuvuvuvuv......is

  1. (100 uw + 99 uv)/99

  2. (99uw + uv)/980

  3. (99uw + uv)/9900

  4. (9uw + 99uv)/900


Correct Option: C
Explanation:

x =0.uwuvuvuvuv...
x = O.uwuv
(i) x 100
100x = uw. uv
(ii) x 100
10000x = uwuv - uv
(iii) - (ii)