Tag: maths

Questions Related to maths

Find the product
$\displaystyle 0.123\times 100$

  1. $1.23$

  2. $123$

  3. $12.3$

  4. $1230$


Correct Option: C
Explanation:
To find $0.123\times 100$
Since, $100$ has $2$ zeros and $0.123$ has decimal point after $3$ digits
So, the product will have decimal point after $1$ digit from left

Therefore, value of $0.123\times 100$ is $12.3$.

Product of $78.12$ and $1.5$ is :

  1. $117.81$

  2. $117.18$

  3. $117.32$

  4. $117.80$


Correct Option: B
Explanation:

The product of $78.12$ and $1.5$ is

 $78.12 \times 1.5=117.18$
Hence, the answer is $117.18$.

Product of $\displaystyle 3.92\times 0.1\times 0.0\times 6.3$ is:

  1. $0.392$

  2. $0.1176$

  3. $0$

  4. $6.3$


Correct Option: C
Explanation:

We know if we multiply $0$ by any number then result will be zero.

So the value of $ 3.92\times .01\times 0.0\times 6.3=0$
Hence, the answer is $0$.

Find the product
$\displaystyle 7.854\times 10$

  1. $785.4$

  2. $78.54$

  3. $7854$

  4. $78540$


Correct Option: B
Explanation:
To find $7.854\times 10$
Since, $10$ has $1$ zero and $7.854$ has decimal point after $3$ digits
So, the product will have decimal point after $2$ digits from left

Therefore, value of $7.854\times 10$ is $78.54$.

Express as rupees using decimals,

  1. $5\ paise$

  2. $75\ paise$

  3. $20\ paise$

  4. $50\ rupees\ 90\ paise$


Correct Option: A
Explanation:
let $1paisa$ =$100 rs$
So,
$(i).$
$=>5paisa=\dfrac{5}{100}=0.005rs$

$(ii).$

$=>75paisa=\dfrac{75}{100}=\dfrac{3}{4}=0.75rs$

$(iii).$
$20paisa=\dfrac{20}{100}=0.2rs$

$(iv).$

$50rs$ $90paisa=50rs+90paisa$

$=>50+\dfrac{90}{100}$

$>=50+0.9=50.9rs$


























Find the value of $x$: $10.5 \div x = 1.05 \div 0.5$.

  1. $0.05$

  2. $105$

  3. $0.105$

  4. $5$


Correct Option: D
Explanation:

$\displaystyle\frac { 10.5 }{ x } = \displaystyle\frac { 1.05 }{ 0.5 } $

$x = \displaystyle\frac { 10.5\times 0.5 }{ 1.05 } = \displaystyle\frac { 105\times 5 }{ 105 } = 5$

If $\displaystyle\frac { 1 }{ 6.198 } = 0.16134$, then the value of $\displaystyle\frac { 1 }{ 0.0006198 } $ is.

  1. $16134$

  2. $1613.4$

  3. $0.16134$

  4. $0.016134$


Correct Option: B
Explanation:

$\displaystyle\frac { 1 }{ 0.0006198 } = \displaystyle\frac { 1 }{ \displaystyle\frac { 6.198 }{ 10000 }  } = \displaystyle\frac { 10000 }{ 6.198 } $

$= 10000 \times 0.16134 = 1613.4$

Consider the following quotients:
I.   $368.39$ divided by $17$.
II.  $170.50$ divided by $62$.
III. $875.65$ divided by $83$.
Their correct sequence in decreasing order is ?

  1. I, III, II

  2. II, I, III

  3. II, III, I

  4. III, I, II


Correct Option: A
Explanation:

(I) $\displaystyle\frac{368.39}{17} = 21.67$


(II) $\displaystyle\frac{170.50}{62} = 2.75$

(III) $\displaystyle\frac{875.65}{83} = 10.55$

$\therefore$ The correct sequence in decreasing order is (I), (III), (II).

Simplified value for $(17.5+2.5)\div 5$ is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: D
Explanation:

$\left( 17.5+2.5 \right) \div 5$

$=\left( 20.0 \right) \div 5$
$ =20\div 5$

$ =4$
So, correct answer is option D.

If $\displaystyle \frac{547.527}{0.0082}=x $, then the value of $\displaystyle \frac{547527}{82}$ is 

  1. $\displaystyle \frac{x}{10}$

  2. 10x

  3. 100x

  4. $\displaystyle \frac{x}{100}$


Correct Option: A
Explanation:

Given, $\displaystyle \frac{547.527}{0.0082}=x $


$\displaystyle \Rightarrow \frac{5475270}{82}=x $

$\displaystyle \Rightarrow \frac{5475270}{82}=\frac{x}{10} $