Tag: maths

Questions Related to maths

In the xy-plane, the parabola with equation $y = (x - 11)^{2}$ intersects the line with equation $y = 25$ at two points, $A$ and $B$. What is the length of $\overline {AB}$?

  1. $10$

  2. $12$

  3. $14$

  4. $16$


Correct Option: A
Explanation:

Given $y=(x-11)^2$

$\Rightarrow  y=x^2-22x+121$
After substitute $ y=25$. we get,
$x^2-22x+121-25=0$
$\Rightarrow x^2-22x+96=0$
$\Rightarrow (x-16)(x-6)=0$
$\Rightarrow  x=16 , x=6$
$\therefore$ two points are  $A, B$ are $(16,25), (6,25)$.
Distance between A and B is 
$\sqrt {(16-6)^2-(25-25)^2}=10$
Hence, option A is correct.

Let $y=f(x)$ and $y=g(x)$ be the pair of curves such that
(i) The tangents at point with equal abscissae intersect on y-axis.
(ii) The normal drawn at points with equal abscissae intersect on x-axis and
(iii) curve f(x) passes through $(1, 1)$ and $g(x)$ passes through $(2, 3)$ then the value of $\displaystyle\int^2 _1(g(x)-f(x))dx$ is?

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: A
Explanation:
$y=f(x)$ and $y=g(x)$
(i)
$\dfrac{dy}{dy}=c\Rightarrow c _{1}=1$
for second curve 
$\dfrac{dy}{dy}=c _{2}\Rightarrow c _{2}=1$

(ii)
$\dfrac{dy}{dx}=d _{1}---(1)$
for second curve 
$\dfrac{dy}{dx}=d _{2}----(2)$

(iii)
From eq (1) and (2)
$d _{1}=2=d _{2}$

$\int _{1}^{2} (g(x)-f(x))d(x)$

$\int _{1}^{2} (4-2)d(x)$

$2\int _{1}^{2} d(x)$

$2(2-1)=2$

The number of values of $C$ for which the line $y = 4x + c$ touch the curve $\dfrac {x^{2}}{4} + y^{2} = 1$.

  1. $0$

  2. $1$

  3. $2$

  4. $\infty$


Correct Option: C
Explanation:

The given curve $\dfrac {x^{2}}{4} + y^{2} = 1$ is an ellipse

Here, $a=2$ and $b=1$

And equation of line is slope form is $y=mx+c$
Also, $c = \sqrt {a^{2}m^{2} + b^{2}}$
$\Rightarrow c = \sqrt {4(16) + 1} = \pm \sqrt {65}$
Hence, $c$ has two values.

The point of intersection of line $\dfrac {x - 6}{-1} = \dfrac {y + 1}{0} = \dfrac {z + 3}{4}$ and plane $x + y - z = 3$ is

  1. $(2, 1, 0)$

  2. $(7, -1, -7)$

  3. $(1, 2, -6)$

  4. $(5, -1, 1)$


Correct Option: D
Explanation:

The given line is $\dfrac {x - 6}{-1} = \dfrac {y + 1}{0} = \dfrac {z + 3}{4}=r$(say) ..... $(i)$

And Plane is $x + y - z = 3$ ........ $(ii)$
$\Rightarrow x=-r+6, y=-1, z=4r-3$
Then, the point $(-r + 6, - 1, 4r - 3)$ lies on the line $(i)$. 

It is given that the plane and the line intersects
Thus, the point $(-r + 6, - 1, 4r - 3)$ satisfies the plane
$\Rightarrow (-r + 6) - 1 - (4r - 3) = 3\Rightarrow r = 1$
$\therefore$ Required intersection point $= (5, -1, 1)$.

The value that m can take so that the straight line $y=4x+m$ touches the curve $x^{2}+4y^{2}=4$ is 

  1. $\underline{+}\sqrt{45}$

  2. $\underline{+}\sqrt{60}$

  3. $\underline{+}\sqrt{65}$

  4. $\underline{+}\sqrt{72}$


Correct Option: C
Explanation:


$C=\underline{+}\sqrt{a^{2}\, m^{2}+b^{2}}$

$={+\sqrt{4(16)+1}}=\underline{+}\sqrt{65}$

Find the point of intersection and the inclination of the two lines $Ax+By=A+B$ and $A(x-y)+B(x + y)=2B$.

  1. $(1,1); 45^0$

  2. $(1,2), 60^0$

  3. $(2,1), 75^0$

  4. None of these


Correct Option: A
Explanation:

$Ax+By=A+B$    ........(i)

$  A(x-y)+B(x+y)=2B$

$\Rightarrow  (A+B)x+(B-A)y=2B$    .......(ii)

$\Rightarrow  (A+B)x=2B-(B-A)y\\ \Rightarrow x=\dfrac { 2B-(B-A)y }{ A+B } $

Substituting $x$ in (i), we get

$A\left( \dfrac { 2B-(B-A)y }{ A+B }  \right) +By=A+B$

$\Rightarrow \dfrac { 2AB-ABy+{ A }^{ 2 }y+{ B }^{ 2 }y+ABy }{ A+B } =A+B$

$\Rightarrow 2AB-ABy+{ B }^{ 2 }y+{ A }^{ 2 }y+ABy={ A }^{ 2 }+{ B }^{ 2 }+2AB$ 

$\Rightarrow (A^{2}+{ B }^{ 2 })y=A^{2}+{ B }^{ 2 }$

$\Rightarrow y=1 $

Substituting $y$ in $(i)$

$\Rightarrow  Ax+B\left( 1  \right) =A+B\\ \Rightarrow Ax+B=A+B\\ \Rightarrow Ax=A\\ \Rightarrow x=1 $

So, the point of intersection is $(1,1) $.

Slope of (i), ${ m } _{ 1 }=-\dfrac { A }{ B } $.

Slope of (ii), ${ m } _{ 2 }=-\dfrac { (A+B) }{ B-A } =\dfrac { A+B }{ A-B } $

$\tan { \theta  } =\dfrac { { m } _{ 1 }-{ m } _{ 2 } }{ 1+{ m } _{ 1 }{ m } _{ 2 } } \\ \Rightarrow \tan { \theta  } =\dfrac { -\dfrac{A}{B}-\dfrac { A+B }{ A-B }  }{ 1-\dfrac{A}{B}\times\dfrac { A+B }{ A-B }  } $

$ \tan { \theta  } =-\dfrac { \left\{ \dfrac { { A }^{ 2 }+AB-AB+{ B }^{ 2 } }{ B(A-B) }  \right\}  }{ \left\{ \dfrac { { -B }^{ 2 }+AB-{ A }^{ 2 }-AB }{ B(A-B) }  \right\}  } \\ \tan { \theta  } =-\dfrac { { A }^{ 2 }+{ B }^{ 2 } }{ { -(A }^{ 2 }+{ B }^{ 2 }) } =1$

$\Rightarrow \theta=45^{o}$

The equation $x-y = 4$ and $x^2 + 4xy + y^2 = 0$ represent the sides of

  1. an equilateral triangle

  2. a right angled triangle

  3. an isosceles triangle

  4. None of these


Correct Option: A
Explanation:

$(y+m _{1}x)(y+m _{2}x)=0$


$y^{2}+(m _{1}+m _{2})xy+m _{2}m _{1}x^2=0$

Comparing coefficients we get

$m _{1}+m _{2}=4$

$m _{1}m _{2}=1$

This implies

$m _{1}^{2}+1=4m _{1}$

$m _{1}^{2}-4m _{1}+1=0$

Therefore $m _{1}=2-\sqrt{3}$ and $m _{1}=2+\sqrt{3}$

$\tan A=2-\sqrt{3}$ and $\tan A=2+\sqrt{3}$

Hence $A=15^0$ and $A=75^0$

Corresponding values of $m _{2}=75^{\circ}$ and $15^{\circ}$

Therefore the angle between the lines is $75^0-15^0$
$=60^0$

The equation of the angle bisectors of the lines is $x=\pm y$

The line $x=-y$ is perpendicular to $x-y=4$

Hence the above is an isosceles triangle with the vertical angle being $60^0$

Hence the triangle is an equilateral triangle.

Let $a,b,c$ and $d$ be non-zero numbers. If the point of intersection of the lines $4ax+2ay+c=0$ and $5bx+2by+d=0$ lies in the fourth quadrant and is equidistant from the two axes then

  1. $2bc-3ad=0$

  2. $2bc+3ad=0$

  3. $3bc-2ad=0$

  4. $3bc+2ad=0$


Correct Option: C
Explanation:
Since point of intersection lies in the fourth quadrant and is equidistant from coordinate axes,

the $x$ and $y$ co-ordinates will be same 

Hence the coordinates become $(h,-h)$

Passing $4ax+2ay+c=0$ through $(h,-h)$ 

$\Rightarrow 4ah-2ah+c=0$

$\Rightarrow h=-\dfrac{c}{2a}----------(1)$

Also passing the second line $5bx+2by+d=0$ through $(h,-h)$

$\Rightarrow 5bh-2bh+d=0$

$\Rightarrow h=-\dfrac{d}{3b}----(2)$

From eq (1) and (2)

$-\dfrac{c}{2a}=-\dfrac{d}{3b}$

$\Rightarrow 3bc-2ad=0$

The straight line passes through the point of intersection of the straight lines $x+2y-10=0$ and $2x+y+5=0$, is 

  1. $5x-4y=0$

  2. $5x+4y=0$

  3. $4x-5y=0$

  4. $4x+5y=0$


Correct Option: B
Explanation:

The line passes through the point of intersection of the equations $x+2y-10=0$  and $2x+y+5=0$

Now,
$\ x+2y-10=0....(i)\ 2x+y+5=0....(ii)\times 2\ =>4x+2y+10=0....(iii)$
Subtracting (iii) and (i), we get,
$-3x-20=0\ =>x=\cfrac { -20 }{ 3 } \ \therefore y=\cfrac { 25 }{ 3 } $
Now the line must pass through $(\cfrac { -20 }{ 3 } ,\cfrac { 25 }{ 3 } )$ 
Therefore, $5x+4y=0$ passes through $(\cfrac { -20 }{ 3 } ,\cfrac { 25 }{ 3 } )$

If the line $y-\sqrt{3}x+3=0$ cuts the curve $y^{2}=x+2$ at $A$ and $B$ and point on the line $P$ is $\left(\sqrt{3},0\right)$ then $\left|PA.PB\right|=$

  1. $\dfrac{4\left(\sqrt{3}+2\right)}{3}$

  2. $\dfrac{4\left(2-\sqrt{3}\right)}{3}$

  3. $\dfrac{4\sqrt{3}+}{2}$

  4. $\dfrac{2\left(\sqrt{3}+2\right)}{3}$


Correct Option: A
Explanation:
Line $ = y - \sqrt 3 x + 3 = 0$
$\begin{array}{l} y=\sqrt { 3 } x-3 \\ m=\sqrt { 3 } =\tan  \theta  \\ \theta =\frac { \pi  }{ 3 } =60^{ \circ  }\to \left( i \right)  \end{array}$
Parametric form of line
$\begin{array}{l} =\frac { { x-{ x _{ 1 } } } }{ { \cos  \theta  } } =\frac { { y-{ y _{ 1 } } } }{ { \sin  \theta  } } =r  \\ \therefore x={ x _{ 1 } }+r \cos  \theta  \\ y={ y _{ 1 } }+r \sin  \theta  \end{array}$
As we know $P\left( {\sqrt 3 ,0} \right)$
$\therefore \left. \begin{array}{l} x=\sqrt { 3 } +r \cos  \theta  \\ y=0+r \sin  \theta  \end{array} \right\} lie\, \, on\, \, parabola\, \, { y^{ 2 } }=x+2$
$\begin{array}{l} \therefore { \left( { r\sin  \theta  } \right) ^{ 2 } }=\sqrt { 3 } +r\cos  \theta +2 \\ { r^{ 2 } }{ \sin ^{ 2 }  }\theta =\sqrt { 3 } +r\cos  \theta +2 \\ { r^{ 2 } }{ \sin ^{ 2 }  }\theta -r\cos  \theta -\sqrt { 3 } -2=0\, \, \, \begin{array} { *{ 20 }{ c } }{ { r _{ 1 } }=PA } \\ { { r _{ 2 } }=PB } \end{array} \\ { r _{ 1 } }{ r _{ 2 } }=\frac { { -\sqrt { 3 } -2 } }{ { { { \sin   }^{ 2 } }\theta  } } \to \left( { ii } \right)  \\ from\, \, \left( i \right) \, \, \theta =60^{ \circ  }\, \, \sin  60^{ \circ  }=\frac { { \sqrt { 3 }  } }{ 2 } \, \, { \sin ^{ 2 }  }60=\frac { 3 }{ 4 }  \\ from\, \, \left( { ii } \right) \, \, \frac { { -\sqrt { 3 } -2 } }{ { \frac { 3 }{ 4 }  } } =\frac { { -4\left( { \sqrt { 3 } +2 } \right)  } }{ 3 }  \\ \therefore \left| { PA.PB } \right| =\left| { { r _{ 1 } }{ r _{ 2 } } } \right| =\frac { { 4\left( { \sqrt { 3 } +2 } \right)  } }{ 3 }  \end{array}$
Hence ans is A.