Tag: maths

Questions Related to maths

$\displaystyle3\tan^2{30^\circ}+\frac{4}{3}\cos^2{30^\circ}-2\sin^2{45^\circ}-\frac{1}{3}\sin^2{60^\circ}$ is equal to__________________.

  1. $\displaystyle\frac{1}{4}$

  2. $\displaystyle\frac{3}{4}$

  3. $1$

  4. $0$


Correct Option: B
Explanation:

Given 


$3\tan ^230+\dfrac 43\cos ^230-2\sin ^245-\dfrac 13\sin ^260$

$=3\left(\dfrac 1{\sqrt 3}\right)^2+\dfrac 43\left(\dfrac {\sqrt 3}2 \right)^2-2\left(\dfrac 1{\sqrt 2}\right)^2-\dfrac 13\left(\dfrac {\sqrt 3}2\right)^2$

$=1+1-1-\dfrac 14$

$= \dfrac 34$

The angle measuring $\displaystyle \frac{\pi ^{c}}{4}$ when expressed in centesimal system is ___ 

  1. $\displaystyle 50^{g}$

  2. $\displaystyle 60^{g}$

  3. $\displaystyle 75^{g}$

  4. $\displaystyle 100^{g}$


Correct Option: A
Explanation:

In $\text{Centesimal System}$, an angle is measured in grades, minutes and seconds.
Given angle $ = \dfrac {{\pi}^c}{4} = \dfrac {{180}^{0}}{4} = {45}^{0} $

We know that $ {1}^{0} = {(\dfrac {10}{9})}^{g} $


$ \Rightarrow {45}^{0} = {\dfrac {10}{9}} \times 45^{g}  ={50}^{g} $

$\displaystyle 30^{\circ}$ in centesimal measure is _____

  1. $\displaystyle \frac{50^{g}}{3}$

  2. $\displaystyle \frac{100^{g}}{3}$

  3. $\displaystyle \frac{160^{g}}{3}$

  4. $\displaystyle \frac{200^{g}}{3}$


Correct Option: B
Explanation:

In $\text{Centesimal System}$, an angle is measured in grades, minutes and seconds.
In centesimal system, we know that $ {1}^{0} = {(\dfrac {10}{9})}^{g} $
$ \Rightarrow  {30}^{0} =  {(\dfrac {10}{9})}^{g} \times 30 = {(\dfrac {100}{3})}^{g} $

When the sun is $30^o$ above the horizon, what is the length of the shadow cast by a building $40$ m high?

  1. $50.23$ m

  2. $70.24$ m

  3. $68.25$ m

  4. $69.28$ m


Correct Option: D
Explanation:

$\tan 30^o = \dfrac{40m}{shadow}$

Shadow $= \dfrac{40}{\tan 30^o}$

$= \dfrac{40}{\frac{1}{\sqrt{3}}}$= $\dfrac{40}{0.57735}$

The shadow of the building is $69.28$ m.

So, option D is correct.

From the tower $30$ m above the sea, the angle of depression of a boat is $68^o$. How far is the boat from the tower?

  1. $12.12$ m

  2. $11.11$ m

  3. $10.10$ m

  4. $9.99$ m


Correct Option: A
Explanation:
$\tan 68^o = \dfrac{30}{distance}$

Distance $=\dfrac{30}{\tan 68^o}$

Distance = $\dfrac{30}{2.475087}$

Distance $= 12.12$ m

So, option A is correct.

When the sun is $50^o$ above the horizon, how long is the shadow cast by a building $16$ m high?

  1. $23$ m

  2. $13.42$ m

  3. $43.42$ m

  4. $23.42$ m


Correct Option: B
Explanation:

$\tan 50^o = \dfrac{16m}{shadow}$

Shadow $= \dfrac{16}{\tan 50^o}$= $\dfrac{16}{1.191754}$= $13.42$

The shadow of the building is $13.42$ m

So, option B is correct.

The equation of a line parallel to $x+2y=1$ and passing through the point of intersection of the lines $x-y=4$ and $3x+y=7$ is ?

  1. $x+2y=5$

  2. $4x+8y-1=0$

  3. $4x+8y+1=0$

  4. none of these


Correct Option: B
Explanation:

Let the equation of line parallel to $x+2y=1$ be $y=mx+c$

intersection point of line $x-y=4$ and $3x+y=7$ is given by solving two equation we get $x=\dfrac { 11 }{ 4 } $ and $y=\dfrac { -5 }{ 4 } $
from equation $x+2y=1\ \Rightarrow y=-\dfrac { 1 }{ 2 } x+\dfrac { 1 }{ 2 } $
we get ${ m } _{ 1 }=-\dfrac { 1 }{ 2 } $
since $y=mx+c$ is parallel to $x+2y=1$
$\therefore { m } _{ 2 }=-\dfrac { 1 }{ 2 } $
also, $y=mx+c\ \Rightarrow \dfrac { -5 }{ 4 } =\dfrac { -1 }{ 2 } .\dfrac { 11 }{ 4 } +c\ \Rightarrow c=\dfrac { 1 }{ 8 } $
therefore equation of line parallel to $x+2y=1$ is given as 
$y=mx+c\ \Rightarrow y=\dfrac { -1 }{ 2 } x+\dfrac { 1 }{ 8 } \ \Rightarrow 4x+8y-1=0$

$2x + y = 0$ is the equation of a diameter of the circle which touches the lines $4x-3y+10=0$ and $4x-3y-30=0$ The center and radius of the circle are ?

  1. $\left (-2, 1\right) ; 4$

  2. $\left (1, -2\right) ; 8$

  3. $\left (1, -2\right) ; 4$

  4. $\left (1, -2\right) ; 16$


Correct Option: C
Explanation:
Given $4x-3y+10=0$ and $4x-3y-30=0$ touches circle implies they are tangent.

Solving the line $2x+y=0$  and  $4x-2y+10=0 $
$x=-1$ and $y=2 $ Point A

Solving the line $2x+y=0$  and  $4x-3y-30=0$
$x=3; y=-6 $ Point B

Distance between the parallel lines is length of diameter
$d=\dfrac{(C _1-C _2)}{\sqrt{(a^2+b^2)}}\\$
$d=\dfrac{(10-(-30)}{\sqrt{(16+9)}}\\$
$d=\dfrac{10+30}{5}$
$d=8$
$r=4$

O is midpoint of AB
$(x,y)=\dfrac{3-1}{2}, \dfrac{2-6}{2}$ $=(1,-2)$

The line $y = x$ meets $y = ke^x , k \le 0$ at

  1. no ponits

  2. one point

  3. two points

  4. none of these


Correct Option: B

Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4ax+2ay+c=0$ and $5bx+2by+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then:

  1. $2bc-3ad =0$

  2. $2bc+3ad =0$

  3. $3bc -2ad =0$

  4. $3bc +2ad =0$


Correct Option: C
Explanation:

If it lies in the fourth quadrant, we get$(x,-x)$

$2ax+c = 0$ and $3bx+d = 0$
$\cfrac{c}{2a} = \cfrac{d}{3b}$
$3bc-2ad = 0$