Tag: nuclear structure

Questions Related to nuclear structure

Which of the following relations is correct?

  1. $E = mc$

  2. $E = mc^2$

  3. $E = 2mc^2$

  4. $E = mc^2/4$


Correct Option: B
Explanation:

According to Einstein, energy and mass are related by the relation.
$E = mc^2$
where c is the speed of light in vacuum.

One milligram of matter is converted into energy. The energy released will be

  1. $9\times 10^{6} J$

  2. $9\times 10^{8}J$

  3. $9\times 10^{10}J$

  4. $9\times 10^{12}J$


Correct Option: C
Explanation:

Here, $m = 1\ mg = 1\times 10^{-3} g $

             $= 1\times 10^{-6}kg$
According to Einstein mass-energy equivalence
                $E = mc^{2}$
where $c$ is the speed of light in vacuum
$\therefore E = (1\times 10^{-6} kg)(3\times 10^{8}ms^{-1})^{2}$
$ = 9\times 10^{10}J$.

The relation between the volume $V$ and the mass $M$ of a nucleus is:

  1. $V\propto M^{3}$

  2. $V\propto M^{1/3}$

  3. $V\propto M$

  4. $V\propto 1/M$


Correct Option: C
Explanation:

Since the density of nucleus is fixed.

$D=\cfrac { M }{ V } \ \Rightarrow M=DV\ M\propto V$

A student wrote the relation for one unified atomic mass unit (u) as $1u=931.5MeV$. What is the correct relation?

  1. $1 u\times c=931.5 MeV$

  2. $1 u\times c^2=931.5 MeV$

  3. $\dfrac{1u}{c^2}=931.5 MeV$

  4. $(1u)^2\times c=931.5Me V$


Correct Option: B
Explanation:

$1u=931.5 MeV$
we know $1u=1.66\times 10^{-21}kv$
$931.5 MeV=931.5\times 10^6\times 1.6\times 10^{-19}J=1.49\times 10^{-10}$
$E=(1u)(c^2)=(1.66\times 10^{-27})(3\times 10^8)^2J=1.494\times 10^{-10}J$
so $(1u)(c)^2=931.5MeV$

A nucleus of mass number $A$ originally at rest emits $\alpha$- particle with speed $v$. The recoil speed of daughter nucleus is:

  1. $\cfrac{4v}{A-4}$

  2. $\cfrac{4v}{A+4}$

  3. $\cfrac{v}{A-4}$

  4. $\cfrac{v}{A+4}$


Correct Option: A

As the mass number increase, binding energy per nucleon,

  1. increases

  2. decreases

  3. remain same

  4. may increase or may decrease


Correct Option: D

Per nucleon energy of $ _ { 3 } L ^ { 7 }$ and $2 ^ { \mathrm { H } e ^ { 4 } }$  nucleus is 5. 60  MeV and 7.06 MeV then in$ _ { 3 } \mathrm { L } ^ { 7 } + _ { 1 } \mathrm { P } ^ { 1 } \rightarrow 2 _ { 2 } \mathrm { He } ^ { 4 }$ energy released is:

  1. $29.6 \mathrm { MeV }$

  2. $2.4MeV$

  3. $8.4 \mathrm { MeV }$

  4. $17.3 \mathrm { MeV }$


Correct Option: A

Mass defect of an atom refers to 

  1. inaccurate measurement of mass of neutrons

  2. mass annihilated to produce energy to bind the nucleons

  3. packing fraction

  4. difference in the number of neutrons and protons in the nucleus


Correct Option: B
Explanation:

$ Mc^{2} + (B.E) = (N _{mN} + Z _{mP})c^{2}$
where,
         $M _{c} =  $  total mass of nucleus.
         $N _{mN} =  $  total mass of neutrons
         $N _{mP}  =  $  total mass of protons

In a fission process, nucleus A divides into two nuclei B and C, their binding energies being $\mathbf { E } _ { \mathbf { a } ^ { * } }$   $E _ { b }$  and $E _ { c }$ respectively. Ihen

  1. $\mathbf { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { c } } = \mathrm { E } _ { \mathrm { a } }$

  2. $\mathrm { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { c } } > \mathrm { E } _ { \mathrm { a } }$

  3. $\mathrm { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { e } } < \mathrm { E } _ { \mathrm { a } }$

  4. $\mathrm { E } _ { \mathrm { b } } \mathrm { E } _ { \mathrm { c } } = \mathrm { E } _ { \mathrm { a } }$


Correct Option: A
Explanation:

$\begin{array}{l} { E _{ b } }+{ E _{ c } }>{ E _{ a } } \ \, \because some\, \, energy\, \, is\, \, goen\, \, in\, \, breaking\, \, nuclie\, \, of\, \, A \ Hence, \ option\, \, A\, \, is\, \, correct\, \, answer. \end{array}$

For uranium nucleus. Find relation between mass and volume 

  1. $m\propto v$

  2. $m\propto \sqrt{v}$

  3. $m\propto v^2$

  4. $m\propto \dfrac{1}{v}$


Correct Option: A