Tag: heat and thermodynamics

Questions Related to heat and thermodynamics

Three perfect gases at absolute temperatures ${T} _{1},{T} _{2}$ and ${T} _{3}$ are mixed. The masses of molecules are ${m} _{1},{m} _{2}$ and ${m} _{3}$ and the number of molecules are ${n} _{1},{n} _{2}$ and ${n} _{3}$ respectively. Assuming no loss of energy, the final temperature of the mixture is:

  1. $\cfrac { { n } _{ 1 }{ T } _{ 1 }+{ n } _{ 2 }{ T } _{ 2 }+{ n } _{ 3 }{ T } _{ 3 } }{ { n } _{ 1 }+{ n } _{ 2 }+{ n } _{ 3 } } $

  2. $\cfrac { { n } _{ 1 }{ T } _{ 1 }+{ n } _{ 2 }{ { T } _{ 2 } }^{ 2 }+{ n } _{ 3 }{ { T } _{ 3 } }^{ 2 } }{ { n } _{ 1 }{ T } _{ 1 }+{ n } _{ 2 }{ T } _{ 2 }+{ n } _{ 3 }{ T } _{ 3 } } $

  3. $\cfrac { { n } _{ 1 }{ { T } _{ 1 } }^{ 2 }+{ n } _{ 2 }{ { T } _{ 2 } }^{ 2 }+{ n } _{ 3 }{ { T } _{ 3 } }^{ 2 } }{ { n } _{ 1 }{ T } _{ 1 }+{ n } _{ 2 }{ T } _{ 2 }+{ n } _{ 3 }{ T } _{ 3 } } $

  4. $\cfrac { \left( { T } _{ 1 }+{ T } _{ 2 }+{ T } _{ 3 } \right) }{ 3 } $


Correct Option: A

For hydrogen gas $C _{p} -C _{v} = a$ and for oxygen gas $C _{p} - C _{v}=b$, where $C _{p}$ and $C _{v}$ are molar specific heats. Then the relation between 'a' and 'b' is

  1. $a=16b$

  2. $b=16a$

  3. $a=4b$

  4. $a =b$


Correct Option: A

The specific heat of air at constant pressure is $1.005\ kJ/kg\ K$ and the specific heat of air at constant volume is $0.718\ kJ/kg\ K$ .Find the specific gas constant.

  1. $0.287\ KJ/kg K$

  2. $0.21\ kJ/kg K$

  3. $0.34\ kJ/kg K$

  4. $0.19\ kJ/kg K$


Correct Option: A
Explanation:

Specific gas constant = Specific heat at constant pressure - Specific heat at constant volume

                                     = 1.005 - 0.718
                                     = 0.287 KJ/kgK

The specific heat of Argon at constant volume is $0.3122 kj/kg K$. Find the specific heat of Argon at constant pressure if  $ R$  $=$8.314 kJ/Kmole K. (Molecular weight of argon$=$ $39.95$)

  1. $520.3$

  2. $530.2$

  3. $230.5$

  4. $302.5$


Correct Option: A
Explanation:
Given,
$C _v=0.3122\ kJ/kg.K$
$R=8.314$
$M=39.95$
$C _{p}=?$
We know,

$C _p-C _v=\dfrac{R}{M}$

$C _p-C _v=\dfrac{8.314}{39.95}=0.2081$

$C _p=0.3122+0.2081=0.5203$

$C _p=520.3\ J/kg.K$

Option $\textbf A$ is the correct answer

Four moles of a perfect gas heated to increase its temperature by ${2^ \circ }C$ absorbs heat of 40 cal at constant volume. If the same gas is heated at constant pressure the amount of heat supplied is (R$=$ 2 cal/mol K)

  1. 28 cal

  2. 56 cal

  3. 84 cal

  4. 94 cal


Correct Option: B
Explanation:
Heat supplied at constant volume
$Q _v=nC _v\triangle T$
$40=4\times C _v\times 2$
$C _v=5$ cal/mol.K
$C _p=C _v+R=5+2=7cal/mol.k$
$\Rightarrow $ Heat supplied at constant pressure
$Q _p=nC _p\triangle T=4\times 7\times 2$
$Q _p=56cal$

Eight spherical droplets, each of radius $'r'$ of a liquid of density $'\phi'$ and surface tension $'T'$ coalesce to form one big drop. If $'s'$ in the specific heat of the liquid. Then the rise in the temperature of the liquid.

  1. $\dfrac {2T}{3r \rho s}$

  2. $\dfrac {3T}{r \rho s}$

  3. $\dfrac {3T}{2r \rho s}$

  4. $\dfrac {T}{r \rho s}$


Correct Option: C

The specific heat at constant volume for the monatomic argon is $0.075 \ kcal/kg-K$, whereas its gram molecular specific heat is $C _v \ = 2.98 \ cal/mol/K$. The mass of the argon atom is (Avogadro's number $= 6.02 \times 10^{23}$ molecules/mol)

  1. $6.60 \times 10^{-23} g$

  2. $3.30 \times 10^{-23}g$

  3. $2.20 \times 10^{-23}g$

  4. $13.20 \times 10^{-23}g$


Correct Option: A
Explanation:

Mass of one mole of argon =$\dfrac{gram \  molecular \  specific \  heat}{specific\   heat \  at \  constant \  volume}=\dfrac{2.98\times 10^{-3}}{0.075}=0.039733 \ g$


Thus mass of each argon atom=$\dfrac{0.0397333}{6.02\times 10^{23}}=6.60\times 10^{-23}g$

If the ratio of specific heat of a gas at constant pressure to that at constant volume is $\gamma$, the change in internal energy of the mass of gas, when the volume changes from $V \ to \ 2V$ at constant pressure P, is

  1. $\dfrac{R}{\gamma- 1}$

  2. $PV$

  3. $\dfrac{PV}{\gamma - 1}$

  4. $\dfrac{\gamma PV}{\gamma - 1}$


Correct Option: C
Explanation:

At constant pressure, change in internal energy$ \Delta U=nC _v\Delta T$
Now,$\dfrac{C _p}{C _v}=\gamma$
$\Rightarrow 1$+$\dfrac{R}{C _v}$=$\gamma$
$\Rightarrow C _v=\dfrac{R}{\gamma -1}$
Using Charle's law, final temperature=2\times initial temperatue=2T
Thus,  $ \Delta U=nC _v(2T-T)=nC _vT=\dfrac{nRT}{\gamma -1}=\dfrac{PV}{\gamma -1}$

A vessel of volume $0.2 m^3$ contains hydrogen gas at temperature $300 K$ and pressure $1 \ bar$. Find the heat (in kcal) required to raise the temperature to $400 K$. (The molar heat capacity of hydrogen at constant volume is $5 \ cal/mol K$)

  1. $4$

  2. $2$

  3. $5$

  4. $8$


Correct Option: A
Explanation:

Using the equation $PV=nRT$ we have
$0.2\times 10^5=n\times 8.314\times 300$
Thus we get n as 8 moles.
Now the heat absorbed is given as 
$Q=W+U=nR\Delta T+nC _v\Delta T$
or
$Q=n(1+\frac{3}{2})R\Delta T$
or
$Q=8\times \frac{5}{2}\times 1.987\times 100=4000  kcal$

The specific heat of a gas 

  1. Has only two value CP and Cv

  2. Has a unique value at a given temperature

  3. Can have any value between 0 and $\infty $

  4. Depends upon the mass of the gas


Correct Option: A