Tag: mathematics and statistics
Questions Related to mathematics and statistics
Let $\displaystyle f(x)=\left ( 2-\dfrac{x}{a} \right )^{\tan \left ( \dfrac{\pi :x }{2:a} \right )}, x\neq a$. The value which should be assigned to $f$ at $x=a$ so that it is continuous everywhere is
If $f(x)=\left{\begin{matrix} |x|-3, & x < 1\ |x-2|+a, & x\geq 1\end{matrix}\right.$ and $g(x)=\left{\begin{matrix} 2-|x|, & x < 2 \ sgn(x)-b, & x\geq 2\end{matrix}\right.$ and $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then which of the following values of a and b are possible.
If $\Delta =\begin{vmatrix} { a } _{ 11 } & { a } _{ 12 } & { a } _{ 13 } \ { a } _{ 21 } & { a } _{ 22 } & { a } _{ 23 } \ { a } _{ 31 } & { a } _{ 32 } & { a } _{ 33 } \end{vmatrix}$ and ${ A } _{ ij }$ is cofactors of ${ a } _{ ij }$, then the value of $\Delta $ is given by
$A=\left{\begin{array}{ll}
8 & 9\
10 & 11
\end{array}\right}$, then cofactor of $\mathrm{a} _{12}$ is:
If $\triangle =\begin{bmatrix} { a } _{ 1 } & { b } _{ 1 } & { c } _{ 1 } \ { a } _{ 2 } & { b } _{ 2 } & { c } _{ 2 } \ { a } _{ 3 } & { b } _{ 3 } & { c } _{ 3 } \end{bmatrix}$ and ${A} _{2},{B} _{2},{C} _{2}$ are respectively cofactors of ${a} _{2},{b} _{2},{c} _{2}$ then ${a} _{1}{A} _{2}+{b} _{1}{B} _{2}+{c} _{1}{C} _{2}$ is equal to ?
If $\Delta = \begin{vmatrix}a _1 & b _1 & c _1 \ a _2 & b _2 & c _2\ a _3 & b _3 & c _3\end{vmatrix}$ and $A _1, B _1, C _1$ denote the co-factors of $a _1, b _1, c _1$ respectively, then teh value os the determinant $\begin{vmatrix}A _1 & B _1 & C _1\ A _2 & B _2 & C _2\ A _3 & B _3 & C _3\end{vmatrix}$ is-
If $\Delta = \left| {\begin{array}{*{20}{c}} {{a _1}}&{{b _1}}&{{c _1}} \ {{a _2}}&{{b _2}}&{{c _2}} \ {{a _3}}&{{b _3}}&{{c _3}} \end{array}} \right|$ and $A _2$, $B _2$, $C _2$ are respectively cofactors of $a _2,b _2,c _2$ then
The value of a third order determinant is $11$, then the value of the square of the determinant formed by the cofactors will be?
Consider the determinant, $\Delta=\begin{vmatrix} p & q & r \ x & y & z \ l & m & n \end{vmatrix}$ ${M} _{0}$ denotes the minor of an element in $i$th row and $j$th column and ${C} _{ij}$ denotes the cofactor of an element in $i$th row and $j$th column.
The value of $p.{C} _{21}+q.{C} _{22}+r.{C} _{23}$ is equal to
The cofactor of the element $4$ in the determinant $\begin{vmatrix} 1 & 3 & 5 & 1\ 2 & 3 & 4 & 2\ 8 & 0 & 1 & 1\ 0 & 2 & 1 & 1\end{vmatrix}$ is?