Tag: mathematics and statistics
Questions Related to mathematics and statistics
If $A=\begin{bmatrix} 1 & -2 & 3 \ 4 & 0 & -1 \ -3 & 1 & 5 \end{bmatrix}$, then ${(adj. A)} _{23}$ is equal to
$A,B,C$ are cofactors of elements, $\mathrm{a},\ \mathrm{b},\ \mathrm{c}$ in
${\begin{bmatrix}
a & b & c\
2 & 4 & 7\
-1 & 0 & 3
\end{bmatrix}}$ then the value of $(2\mathrm{A}+4\mathrm{B}+7\mathrm{C})$
is equal to
If $\displaystyle A=\left[ { a } _{ ij } \right] $ is a $4 \times 4$ matrix and $\displaystyle { c } _{ ij }$ is the co-factor of the element $\displaystyle { a } _{ ij }$ in $\displaystyle \left| A \right| $, then the expression $\displaystyle { a } _{ 11 }{ c } _{ 11 }+{ a } _{ 12 }{ c } _{ 12 }+{ a } _{ 13 }{ c } _{ 13 }+{ a } _{ 14 }{ c } _{ 14 }$ equals
If in $\displaystyle \left[ \begin{matrix} { a } _{ 1 } \ { a } _{ 2 } \ { a } _{ 3 } \end{matrix}\begin{matrix} { b } _{ 1 } \ { b } _{ 2 } \ { b } _{ 3 } \end{matrix}\begin{matrix} { c } _{ 1 } \ { c } _{ 2 } \ { c } _{ 3 } \end{matrix} \right] $, the cofactor of $\displaystyle { a } _{ r }$ is $\displaystyle { A } _{ r }$, then $\displaystyle { c } _{ 1 }{ A } _{ 1 }+{ c } _{ 2 }{ A } _{ 2 }+{ c } _{ 3 }{ A } _{ 3 }$ is
If $A=\begin{bmatrix} 3 & 2 & 4 \ 1 & 2 & 1 \ 3 & 2 & 6 \end{bmatrix}$ and $A _{ij}$ are the cofactors of $a _{ij}$, then $a _{11}A _{11}+a _{12}A _{12}+a _{13}A _{13}$ is equal to
If ${A} _{1}, {B} _{1}, {C} _{1}..$ are respectively the co-factor of the elements ${a} _{1}, {b} _{1}, {c} _{1}$.
$\triangle =\begin{vmatrix} { a } _{ 1 } & { b } _{ 1 } & { c } _{ 1 } \ a _{ 2 } & { b } _{ 2 } & { c } _{ 2 } \ { a } _{ 3 } & { b } _{ 3 } & { c } _{ 3 } \end{vmatrix}$, then $\begin{vmatrix} { B } _{ 2 } & C _{ 2 } \ B _{ 3 } & C _{ 3 } \end{vmatrix}$
If $\Delta =\left| \begin{matrix} { a } _{ 1 } & { b } _{ 1 } & { c } _{ 1 } \ { a } _{ 2 } & { b } _{ 2 } & { c } _{ 2 } \ { a } _{ 3 } & { b } _{ 3 } & { c } _{ 3 } \end{matrix} \right|$ and $A _{1},B _{1},C _{1}$ denote the co-factors of $a _{1},b _{2},c _{1}$ respectively, then the value of the determinant $\left| \begin{matrix} { A } _{ 1 } & { B } _{ 1 } & { C } _{ 1 } \ { A } _{ 2 } & { B } _{ 2 } & { C } _{ 2 } \ { A } _{ 3 } & { B } _{ 3 } & { C } _{ 3 } \end{matrix} \right|$ is