Tag: mathematics and statistics
Questions Related to mathematics and statistics
The function
$\displaystyle f\left ( x \right )=\frac{\cos x-\sin x}{\cos 2x}$ is not defined at $\displaystyle x=\frac{\pi }{4}$. The value of $\displaystyle f\left ( \frac{\pi }{4}\right )$ so that $ f\left ( x \right)$ is continuous everywhere, is
$\displaystyle g(x)= \begin{cases}1 & \, x\leq -2 \ \displaystyle \frac{1}{2} x& \, -2< x< 4 \ \sqrt{x} & , x\geq 4 \end{cases}$.then
Given $\displaystyle f(x) = \begin{cases} 3-\left [ \cot ^{-1}\left ( \frac{2x^{3}-3}{x^{2}} \right ) \right ] & \mbox{for } x> 0 \ \left { x^{2} \right }\cos \left ( e^{1/x} \right ) & \mbox{for } x< 0 \end{cases}$ where { } & [ ] denotes the fractional part and the integral part functions respectively, then which of the following statement does not hold good -
Consider $\displaystyle f(x) = \begin{cases} x\left [ x \right ]^{2}\log _{(1+x)}2& \mbox{ for } -1< x< 0 \ \dfrac{\ln e^{x^{2}}+2\sqrt{\left { x \right }}}{\tan \sqrt{x}} & \mbox{ for } 0< x< 1 \end{cases}$ where [] & {} are the greatest integer function & fractional part function respectively, then -
Let $f(x)=\begin{cases} \dfrac{1-\cos 2x}{2x^2}&:& x\ne 0\k &:& x=0 \end{cases}$.
Let $f\left( x \right) =\dfrac { \log { \left( 1+x+{ x }^{ 2 } \right) } +\log { \left( 1-x+{ x }^{ 2 } \right) } }{ \sec { x } -\cos { x } } ,x\neq 0$ The value of $f\left (0\right)$ so that $f$ is continuous at $x=0$ is
Given $f(x)=\dfrac{\left[ \left{ \left| x \right| \right} \right] { e }^{ { x }^{ 2 } }\left{ \left[ \left| x+\left{ x \right} \right| \right] \right} }{\left( { e }^{ 1/{ x }^{ 2 } }-1 \right) sgn\left( \sin { x } \right) }$ for $x\neq 0$
$=0, for\ x=0$
Where $\left{ x \right} $ is the fractional part function; $[x]$ is the step up function and $sgn{(x)}$ is the signum function of $x$ then, $f(x)$
Given that $\displaystyle \prod _{n=1}^n cos \dfrac{x}{2^n}= \dfrac{\sin x}{2^n \sin \left ( \dfrac{x}{2^n} \right )}$ and $\displaystyle f(x) = \left{\begin{matrix}\lim _{n \rightarrow \infty}\sum _{n = 1}^n \dfrac{1}{2^n} \tan \left (\dfrac{x}{2^n} \right ), & x \in (0, \pi) - \left {\dfrac{\pi}{2} \right }\ \dfrac{2}{\pi} & x = \dfrac{\pi}{2}\end{matrix}\right.$
Then which one of the following is true?
The value of f(0) so that the function
$f(x)=\displaystyle \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$
becomes continuous, is equal to