Tag: maths

Questions Related to maths

If $a,\ b,\ c$ are in $G.P$, then
$a(b^{2}+c^{2})=c(a^{2}+b^{2})$

  1. True

  2. False


Correct Option: A
Explanation:

Given 


$a,b,c$ are in GP

$\implies  b^2=ac\cdots(1)$

LHS

$a(b^2+c^2)$

$\implies a(ac+c^2)$

$\implies a^2c+ac^2$

$\implies c(a^2+ac)$

$\implies c(a^2+b^2)$

RHS

Hence Proved.

In a GP the sum of three numbers is $14 ,$ if $1$ is added to first two numbers and the third number is decreased by $1$, the series becomes AP, find the geometric sequence.

  1. $2,4,8$

  2. $8,4,2$

  3. $6,18,54$

  4. $8,16,32$


Correct Option: A,B
Explanation:


$\\Let\>the\>numbers\>an\>a,\>ar,\>ar^2\\where\>a=first\>term\>and\>r=common\>ratio\\\therefore\>a+ar+ar^2=14\\and\\a+1,\>ar+1,\>ar^2-1\>are\>in\>AP\\\therefore\>2(ar+1)=(a+1)+(ar^2-1)\\or\>2ar+2=a+ar^2\\or\>3ar+2=a+ar+ar^2\\or\>3ar+2=14\\\therefore\>ar=4\\or\>a=(\frac{4}{r})\\\therefore(\frac{4}{r})+(\frac{4}{r})\times\>r+(\frac{4}{r})\times\>r^2=14\\or\>(\frac{4}{r})+4+4r=14\\or\>4+4r+4r^2=14r\\or\>4r^2-10r+4=0\\or\>4r^2-8r-2r+4=0\\or\>4r(r-2)-2(r-2)=0\\or\>(4r-2)(r-2)=0\\\therefore\>r=(\frac{1}{2})\>or\>2\\ifr=(\frac{1}{2}),then\>a=(\frac{4}{(\frac{1}{2})})=8\\\therefore\>sequence\>8,4,2\>\\\>and\>if\>r=2,\>then\>a=(\frac{4}{2})=2\\\therefore\>sequence\>2,4,8$

 

Which of the following is a geometric series? 

  1. $2,4,6,8 , \dots \dots$

  2. $1 / 2,1,2,4 \dots \dots$

  3. $1 / 4,1 / 6,1 / 8,1 / 10 , \dots \ldots$

  4. $3,9,18,36 , \dots$


Correct Option: B
Explanation:

A series is said to be geometric when ratio between one term and its previous term is constant/same throughout the series.


a) $2, 4, 6, 8$


$\Rightarrow$$\dfrac{4}{2} \neq \dfrac{6}{4} $

b) $\dfrac{1}{2} , 1 , 2, 4$

$\Rightarrow$$\dfrac{1}{\dfrac{1}{2}} = \dfrac{2}{1} = \dfrac{4}{2} = 2 $

c) $\dfrac{1}{4} , \dfrac{1}{6} , \dfrac{1}{8}$

$\Rightarrow$$\dfrac{1/6}{1/4} \neq \dfrac{1/8}{1/6}$

d) $3, 9, 18 , 36$

$\Rightarrow$$\dfrac{9}{3} \neq \dfrac{18}{9}$.

Coefficient of $x^r$ in $1+(1+x)+(1+x)^2+......+ (1+x)^n$ is 

  1. $^{n+3}C _r$

  2. $^{n+1}C _{r+1}$

  3. $^nC _r$

  4. $^{(n+2)}C _r$


Correct Option: A
Explanation:

Consider given the series, $1+\left( 1+x \right)+{{\left( 1+x \right)}^{2}}+{{\left( 1+x \right)}^{3}}+...............{{\left( 1+x \right)}^{n}}$

Given series is G.P. which have first term $a=1$,comman ratio $r=1+x$ and number of term $=n$

So sum is,

${{s} _{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}=\dfrac{[{{\left( 1+x \right)}^{n}}-1]}{1+x}={{\left( 1+x \right)}^{n-1}}-{{\left( 1+x \right)}^{-n}}$

Now rth term of ${{\left( 1+x \right)}^{n-1}}-{{\left( 1+x \right)}^{-n}}$ is $={}^{n-1}{{C} _{r}}{{x}^{r}}-{}^{-n}{{C} _{r}}.{{x}^{r}}=\left( {}^{n-1}{{C} _{r}}-{}^{-n}{{C} _{r}} \right){{x}^{r}}$


Hence, coefficient of ${{x}^{r}}=\left( {}^{n-1}{{C} _{r}}-{}^{-n}{{C} _{r}} \right)$


Hence, this is the answer.

The value of $p$ if $3,p,12$ are in GP

  1. $6$

  2. $4$

  3. $9$

  4. None.


Correct Option: A
Explanation:

Given $3,p,12$ are in GP

The condition to be in GP
$b^2=ac\\p^2=3(12)\\p^2=36\\p=6$

The common ratio of GP $4,8,16,32,.....$ is

  1. $2$

  2. $3$

  3. $4$

  4. $0$


Correct Option: A
Explanation:

Given series is $4,8,16,32,....$

Common ratio is given as $\dfrac84=2$

If $\alpha, \beta, \gamma$ are non-constant terms in G.P and equations $\alpha { x }^{ 2 }+2\beta x+\gamma =0\quad $ and ${x}^{2}+x-1=0$ has a common root then $\left( \gamma -\alpha  \right) ,\beta $ is

  1. $\alpha \beta $

  2. $\beta \gamma $

  3. $\gamma \alpha $

  4. $0$


Correct Option: C
Explanation:

Let the common ratio of G.P is $r$ Therefore $\quad \beta =\alpha t,\alpha { t }^{ 2 }$
Equation $\alpha { x }^{ 2 }+2\alpha rx+\alpha { t }=0\quad 
\Rightarrow { x }^{ 2 }+2rx+{ t }^{ 2 }=0....(i)$
Given equation (i) and ${ x }^{ 2 }+x-1=0....(ii)$ has a common root
$(i)-(ii)\Rightarrow (2e-1)x+({ r }^{ 2 }+1)=0\Rightarrow x=\cfrac { -\left( { r }^{ 2 }+1 \right)  }{ 2r-1 } ....(iii)\quad $
Putting (iii) in equation (ii) $\Rightarrow { \left( { r }^{ 2 }+1 \right)  }^{ 2 }-\left( { r }^{ 2 }+1 \right) (2r-1)-{ \left( { 2r }^{ 2 }-1 \right)  }^{ 2 }=0\Rightarrow { r }^{ 4 }-2{ r }^{ 3 }-{ r }^{ 2 }+2r+1=0....(iv)$
dividing equation (iv) by ${r}^{2}$ $\Rightarrow { \left( r-\cfrac { 1 }{ r }  \right)  }^{ 2 }-2{ \left( r-\cfrac { 1 }{ r }  \right)  }+1=0\Rightarrow { \left( r-\cfrac { 1 }{ r } -1 \right)  }^{ 2 }=0\Rightarrow \cfrac { r-1 }{ r } =1....(v)\quad $
$\left( \gamma -\alpha  \right) \beta =\left( \alpha { r }^{ 2 }-\alpha  \right) \times \alpha r={ \alpha  }^{ 2 }\left( { \alpha  }^{ 2 }-1 \right) r={ \alpha  }^{ 2 }(r-1)={ \alpha  }^{ 2 }{ r }^{ 2 }$
(using $(v)=\alpha \times \alpha { t }^{ 2 }\quad $

Write down the first five terms of the geometric progression which has first term 1 and common ratio 4.

  1. 1, 4, 16, 64, 244

  2. 1, 4, 24, 64, 256

  3. 1, 4, 16, 32, 256

  4. 1, 4, 16, 64, 256


Correct Option: D
Explanation:

Let a and d be the first term and common ratio of the GP respectively.
Given a=1 and d=4.
Now, $a _n=ar^{n-1}$
$\therefore a _1=a=1$
$a _2=ar=1\times4=4$
$a _3=ar^2=1\times(4)^2=16$
$a _4=ar^3=1\times(4)^3=64$
$a _5=ar^4=1\times(4)^4=256$





$\displaystyle \frac{1}{c},(\frac{1}{ca})^{\dfrac{1}{2}},\frac{1}{a}$ is in

  1. AP

  2. GP

  3. HP

  4. NONE


Correct Option: B
Explanation:

Given series


$\dfrac{1}{c},\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}},\dfrac{1}{a}$

Lets consider a G.P of elements $A,B,C$

 $\therefore$ Geo.mean $\Rightarrow B^2=AC$

Comparing it with given series.

$A=\dfrac{1}{c}B=\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}},C=\dfrac{1}{a}$

$\therefore B^2=\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}\times 2}$

            $=\dfrac{1}{ca}$........(1)

$AC=\dfrac{1}{c}\times \dfrac{1}{a}=\dfrac{1}{ca}$..............(ii)

$\therefore (i)=(ii)$

$\therefore B^2=AC$ So given series is in G.P 

Determine the relations among x, y and z if $y^{2}=xz$

  1. A.P

  2. G.P

  3. A.G.P

  4. none of these


Correct Option: B
Explanation:

It is fundamental concept that if $y^2 = xz$, then $x,y,z\in$  G.P