Tag: understanding geometric progressions

Questions Related to understanding geometric progressions

The geometric sequence is also called as

  1. geometric progression

  2. arithmetic sequence

  3. harmonic sequence

  4. geometric series


Correct Option: A
Explanation:

The sequence is also called as Progression.

So, the geometric sequence can be called as the geometric progression.

A progression of the form $a, ar, ar^2$, ..... is a

  1. geometric series

  2. harmonic series

  3. arithmetic progression

  4. geometric progression


Correct Option: D
Explanation:

A progression of the form $a, ar, ar^2$, ..... is a geometric progression.
Geometric Progression refers to a sequence in which successor term of each term is obtained by multiplying a constant term.

The geometric progression which have infinite terms is called

  1. finite geometric progression

  2. finite arithmetic progression

  3. infinite geometric progression

  4. finite harmonic progression


Correct Option: C
Explanation:

The geometric progression which have infinite terms is called infinite geometric progression.
$1 + 0.5 + 0.25 + 0.125....$ is an example of infinite geometric progression.

If $a, b, c$ are in G.P., then

  1. $a(b^{2} + a^{2}) = c(b^{2} + c^{2})$

  2. $a(a^{2} + c^{2}) = c(a^{2} + b^{2})$

  3. $a^{2}(b + c) = c^{2}(a + b)$

  4. None of these


Correct Option: B
Explanation:

$b^{2} = ac$ satisfies (ii).

The sum $1+\dfrac { 2 }{ x } +\dfrac { 4 }{ { x }^{ 2 } } +\dfrac { 8 }{ { x }^{ 3 } } +....\left( up\ to\ \infty  \right) ,x\neq 0,$ is finite if

  1. $\left| x \right| < 2$

  2. $\left| x \right| > 2$

  3. $\left| x \right| < 1$

  4. $2\left| x \right| < 1$


Correct Option: B
Explanation:
$1 + \dfrac{2}{x} + \dfrac{4}{{{x^3}}} + \dfrac{8}{{{x^3}}}.......\,upto\,\,\infty $
It is infinite $G.P$ with Common ratio $r=\dfrac{2}{x}$
It's sum is infinite if $\left| r \right| < 1$
i-e    
 $\left| {\dfrac{2}{x}} \right| < 1$
 $ \Rightarrow \dfrac{2}{{\left| x \right|}} < 1$
 $ \Rightarrow 2 < \left| x \right|$
$ \Rightarrow \left| x \right| > 2$       

The sum of the infinite series $1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$

  1. Cannot be determined.

  2. Equals $\dfrac{15}{8}$

  3. Equals $2$

  4. Will be higher than $2$.


Correct Option: C
Explanation:

$Given\>series\>is\>an\>infinite\>GP\>with\>first\>term\>=1\>and\>common\>ratio=1/2\\\therefore\>sum=(\frac{a}{1-r})\\=(\frac{a}{1-1/2})=2$

$S = {3^{10}} + {3^9} + \frac{{{3^9}}}{4} + \frac{{{3^7}}}{2} + \frac{{{{5.3}^6}}}{{16}} + \frac{{{3^2}}}{{16}} + \frac{{{{7.3}^4}}}{{64}} + .........$ upto infinite terms, then $\left( {\frac{{25}}{{36}}} \right)S$ equal to 

  1. ${6^9}$

  2. ${3^{10}}$

  3. ${3^{11}}$

  4. ${2.3^{10}}$


Correct Option: B
Explanation:

$\begin{array}{l}S = {3^{10}} + {3^9} + \cfrac{{{3^9}}}{4} + \cfrac{{{3^7}}}{2} + \cfrac{{{{5.3}^6}}}{{16}} + \cfrac{{{3^2}}}{{16}} + \cfrac{{{{7.3}^4}}}{{64}} + .........\infty \S = \cfrac{{1 \times {3^{10}}}}{{{2^0}}} + \cfrac{{2 \times {3^9}}}{{{2^1}}} + \cfrac{{3 \times {3^8}}}{{{2^2}}} + \cfrac{{4 \times {3^7}}}{{{2^3}}} + \cfrac{{5 \times {3^6}}}{{{2^4}}} + \cfrac{{6 \times {3^5}}}{{{2^5}}} + \cfrac{{7 \times {3^4}}}{{{2^6}}} + .....\infty \\cfrac{S}{6} = \cfrac{{{3^9}}}{2} + \cfrac{{2 \times {3^8}}}{{{2^2}}} + .......\infty \S - \cfrac{S}{6} = \cfrac{{{3^{10}}}}{2^0} + \cfrac{{{3^9}}}{{{2^1}}} + \cfrac{{{3^8}}}{{{2^2}}} + ........\infty \\cfrac{{6S - S}}{6} = \cfrac{{{3^{10}}}}{{1 - \cfrac{1}{6}}} = \cfrac{{{3^{10}}}}{5}\left( 6 \right) \end{array}$

$\dfrac56S=\dfrac{3^{10}\times 6 }{5}$
$\therefore \dfrac {25}{36}S=3^{10}$

If $4,64,p$ re in GP find p

  1. 1024

  2. 2944

  3. 512

  4. 256


Correct Option: A
Explanation:

$4,64,p$ are in GP 

Condition to be in GP is 
$b^2=ac\64^2=4p\p=\dfrac{64^2}{4}=1024$

In each of the following questions, a series of number is given which follow certain rules. One of the number is missing. Choose the missing number from the alternatives given below and mark it on your answer-sheet as directed. $1, \dfrac {1}{3}, \dfrac {1}{9}, \dfrac {1}{27}, \dfrac {1}{81}, \dfrac {1}{243}, $?

  1. $\dfrac {1}{729}$

  2. $\dfrac {1}{829}$

  3. $\dfrac {1}{749}$

  4. $\dfrac {1}{769}$


Correct Option: A
Explanation:

G.P series with common ratio $\dfrac 13$

$\therefore$, next term is $\dfrac {1}{243} \times \dfrac {1}{3}=\dfrac {1}{729}$

Find the sum of an infinite G.P : $\displaystyle 1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+.......$

  1. $\displaystyle \frac{3}{5}$

  2. $\displaystyle \frac{3}{2}$

  3. $\displaystyle \frac{49}{27}$

  4. $\displaystyle \frac{8}{5}$


Correct Option: B
Explanation:

Given series is $1+ \dfrac {1}{3}+ \dfrac {1}{9 }+ \dfrac {1}{27}+......$

$a=1, r= \dfrac {1}{3}$

$\therefore S _{\infty}=\dfrac{a}{1-r}$

$S _{\infty}=\dfrac{1}{1-\dfrac{1}{3}}$

$S _{\infty}=\dfrac{1}{\dfrac{2}{3}}$

$\therefore S _{\infty}=\dfrac{3}{2}$