Tag: maths

Questions Related to maths

The sum $1+\dfrac { 2 }{ x } +\dfrac { 4 }{ { x }^{ 2 } } +\dfrac { 8 }{ { x }^{ 3 } } +....\left( up\ to\ \infty  \right) ,x\neq 0,$ is finite if

  1. $\left| x \right| < 2$

  2. $\left| x \right| > 2$

  3. $\left| x \right| < 1$

  4. $2\left| x \right| < 1$


Correct Option: B
Explanation:
$1 + \dfrac{2}{x} + \dfrac{4}{{{x^3}}} + \dfrac{8}{{{x^3}}}.......\,upto\,\,\infty $
It is infinite $G.P$ with Common ratio $r=\dfrac{2}{x}$
It's sum is infinite if $\left| r \right| < 1$
i-e    
 $\left| {\dfrac{2}{x}} \right| < 1$
 $ \Rightarrow \dfrac{2}{{\left| x \right|}} < 1$
 $ \Rightarrow 2 < \left| x \right|$
$ \Rightarrow \left| x \right| > 2$       

The sum of the infinite series $1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$

  1. Cannot be determined.

  2. Equals $\dfrac{15}{8}$

  3. Equals $2$

  4. Will be higher than $2$.


Correct Option: C
Explanation:

$Given\>series\>is\>an\>infinite\>GP\>with\>first\>term\>=1\>and\>common\>ratio=1/2\\\therefore\>sum=(\frac{a}{1-r})\\=(\frac{a}{1-1/2})=2$

$S = {3^{10}} + {3^9} + \frac{{{3^9}}}{4} + \frac{{{3^7}}}{2} + \frac{{{{5.3}^6}}}{{16}} + \frac{{{3^2}}}{{16}} + \frac{{{{7.3}^4}}}{{64}} + .........$ upto infinite terms, then $\left( {\frac{{25}}{{36}}} \right)S$ equal to 

  1. ${6^9}$

  2. ${3^{10}}$

  3. ${3^{11}}$

  4. ${2.3^{10}}$


Correct Option: B
Explanation:

$\begin{array}{l}S = {3^{10}} + {3^9} + \cfrac{{{3^9}}}{4} + \cfrac{{{3^7}}}{2} + \cfrac{{{{5.3}^6}}}{{16}} + \cfrac{{{3^2}}}{{16}} + \cfrac{{{{7.3}^4}}}{{64}} + .........\infty \S = \cfrac{{1 \times {3^{10}}}}{{{2^0}}} + \cfrac{{2 \times {3^9}}}{{{2^1}}} + \cfrac{{3 \times {3^8}}}{{{2^2}}} + \cfrac{{4 \times {3^7}}}{{{2^3}}} + \cfrac{{5 \times {3^6}}}{{{2^4}}} + \cfrac{{6 \times {3^5}}}{{{2^5}}} + \cfrac{{7 \times {3^4}}}{{{2^6}}} + .....\infty \\cfrac{S}{6} = \cfrac{{{3^9}}}{2} + \cfrac{{2 \times {3^8}}}{{{2^2}}} + .......\infty \S - \cfrac{S}{6} = \cfrac{{{3^{10}}}}{2^0} + \cfrac{{{3^9}}}{{{2^1}}} + \cfrac{{{3^8}}}{{{2^2}}} + ........\infty \\cfrac{{6S - S}}{6} = \cfrac{{{3^{10}}}}{{1 - \cfrac{1}{6}}} = \cfrac{{{3^{10}}}}{5}\left( 6 \right) \end{array}$

$\dfrac56S=\dfrac{3^{10}\times 6 }{5}$
$\therefore \dfrac {25}{36}S=3^{10}$

If $4,64,p$ re in GP find p

  1. 1024

  2. 2944

  3. 512

  4. 256


Correct Option: A
Explanation:

$4,64,p$ are in GP 

Condition to be in GP is 
$b^2=ac\64^2=4p\p=\dfrac{64^2}{4}=1024$

In each of the following questions, a series of number is given which follow certain rules. One of the number is missing. Choose the missing number from the alternatives given below and mark it on your answer-sheet as directed. $1, \dfrac {1}{3}, \dfrac {1}{9}, \dfrac {1}{27}, \dfrac {1}{81}, \dfrac {1}{243}, $?

  1. $\dfrac {1}{729}$

  2. $\dfrac {1}{829}$

  3. $\dfrac {1}{749}$

  4. $\dfrac {1}{769}$


Correct Option: A
Explanation:

G.P series with common ratio $\dfrac 13$

$\therefore$, next term is $\dfrac {1}{243} \times \dfrac {1}{3}=\dfrac {1}{729}$

Find the sum of an infinite G.P : $\displaystyle 1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+.......$

  1. $\displaystyle \frac{3}{5}$

  2. $\displaystyle \frac{3}{2}$

  3. $\displaystyle \frac{49}{27}$

  4. $\displaystyle \frac{8}{5}$


Correct Option: B
Explanation:

Given series is $1+ \dfrac {1}{3}+ \dfrac {1}{9 }+ \dfrac {1}{27}+......$

$a=1, r= \dfrac {1}{3}$

$\therefore S _{\infty}=\dfrac{a}{1-r}$

$S _{\infty}=\dfrac{1}{1-\dfrac{1}{3}}$

$S _{\infty}=\dfrac{1}{\dfrac{2}{3}}$

$\therefore S _{\infty}=\dfrac{3}{2}$

Find the GP whose $5^{th}$ term is $48$ and $9^{th}$ term is$ 768$.

  1. $3,6,12,24$

  2. $2,4,8,16$

  3. $6,12,24,48$

  4. $12,24,36,48$


Correct Option: A
Explanation:

$\displaystyle { ar }^{ 4 }=48$
$\displaystyle { ar }^{ 8 }=768$
$\displaystyle \therefore \quad { r }^{ 4 }=16$
$\displaystyle \therefore \quad r=2$
$\displaystyle a.{ 2 }^{ 4 }=48$
or, $\displaystyle a=\frac { 48 }{ 16 } =3$
The GP is 3,6, 12,24,.....

The reciprocals of all the terms of a geometric progression form a ________ progression.

  1. AP

  2. HP

  3. GP

  4. AGP


Correct Option: C
Explanation:
Let  $ a $ be the first term  and $ r $ be the common ratio of the GP. 

So, the series is $ a, ar, ar^2... $

Their reciprocals are $ \dfrac {1}{a}, \dfrac {1}{ar}, \dfrac {1}{ar^2} .. $

It is also a GP, with first term $ \dfrac {1}{a} $ and common ratio $ \dfrac {1}{r} $

In a _______ each term is found by multiplying the previous term by a constant.

  1. arithmetic sequence

  2. geometric series

  3. arithmetic series

  4. harmonic progression


Correct Option: B
Explanation:

geometric series is a series for which the ratio of each two consecutive terms is a constant function of the summation index .

Or,
In a Geometric series each term is found by multiplying the previous term by a constant.
$(Ans \to B)$

A _________ is a sequence of numbers where each term in the sequence is found by multiplying the previous term with a unchanging number called the common ratio.

  1. geometric progression

  2. arithmetic series

  3. arithmetic progression

  4. harmonic progression


Correct Option: A
Explanation:

A geometric progression is a sequence of numbers where each term in the sequence is found by multiplying the previous term with a with a unchanging number called the common ratio.
Example: $2, 6, 18, 54, 108....$
This geometric sequence has a common ratio $3$.