Tag: maths

Questions Related to maths

Consider the planes $3x-6y+2z+5=0$ and $4x-12y+3z=3$. The plane $67x-162y+47z+44=0$ bisects the angle between the given planes which-

  1. Contains origin

  2. Is acute

  3. Is obtuse

  4. None of these


Correct Option: A,B
Explanation:

For $3x-6y+2z+5=0$ and $-4x+12y-3z+3=0$ bisector are
$\displaystyle \frac { 3x-6y+2z+5 }{ \sqrt { 9+36+4 }  } =\pm \frac { -4x+12y-3z+3 }{ \sqrt { 16+144+9 }  } $
The plane which bisects the angle between the plane that contains the origin
$13\left( 3x-6y+2z+5 \right) =7\left( -4x+12y-3z+3 \right) \ \Rightarrow 67x-162y+47z+44=0$
Further $3\times \left( -4 \right) +\left( -6 \right) \times 12+2\times \left( -3 \right) <0$
Hence, the origin lies in the acute angle.

Angle between planes $2x-y+z$ $=$ $6$ and $x+y+2z$ $=$ $7,$ is -

  1. $\dfrac { \pi }{ 4 } $

  2. $\dfrac { \pi }{ 2 } $

  3. $\dfrac { \pi }{ 3 } $

  4. $\dfrac {- \pi }{ 4 } $


Correct Option: C
Explanation:
Plane $1$: $2x-y+z=6$
normal vector is $\bar{n _1}=2\hat{i}-\hat{j}+\hat{k}$
Plane $2$: $x+y+2z=7$
normal vector is $\bar{n _2}=\hat{i}+\hat{j}+2\hat{k}$
Angle between planes is same as the angle between their normal.
$\Rightarrow \cos\theta =\dfrac{\bar{n _1}\cdot\bar{n _2}}{|\bar{n _1}||\bar{n _2}|}$
$=\dfrac{(2\hat{i}-\hat{j}+\hat{k})\cdot(\hat{i}+\hat{j}+2\hat{k})}{(\sqrt{4+1+1})\sqrt{1+1+4}}$
$=\left|\dfrac{2-1+2}{\sqrt{6}\cdot \sqrt{6}}\right|$
$=\dfrac{3}{6}$
$=\dfrac{1}{2}$
$\Rightarrow \cos\theta =\dfrac{1}{2}$
$\Rightarrow \theta =\dfrac{2}{3}$.

The equation of the plane bisecting the angle between the planes $\displaystyle 3x +4y = 4$ and $\displaystyle 6x - 2y + 3z + 5 = 0$ that contains the origin, is

  1. $\displaystyle 9x - 38y + 15z + 43 = 0$

  2. $\displaystyle 51x + 18y + 15z = 3$

  3. $\displaystyle 9x + 2y + 3z + 1 = 0$

  4. $\displaystyle 17x + 9y + 15z = 26$


Correct Option: B
Explanation:
Equation of given planes can be written as
 $3x+4y=4 , 6x−2y+3z+5=0$

formula is
  $\dfrac {a _1x+b _1y+c _1z+d _1}{\sqrt {a _1^2+b _1^2+c _1^2}}$ = +  or  - $\dfrac {a _2x+b _2y+c _2z+d _2}{\sqrt {a _2^2+b _2^2+c _2^2}}$

by substituting the values in the given formula we will get 

$\dfrac {3x+4y+0z+-41}{\sqrt {3^2+4^2+0^2}}$ = + or - $\dfrac {6x+-2y+3z+5}{\sqrt {6^2+(-2)^2+3^2}}$

$\Rightarrow$ $21x+28y-28 = +\  or\  - 30x-10y+160+25$

so when adding the above equation we will get $51x + 18y + 160z - 3 = 0$

is the plane bisecting the angle containing the origin, and when subtracting we will get $9x - 38y + 160z + 53 = 0$ is the other bisecting plane.

Hence the plane $51x + 18y + 160z - 3 = 0\  or\  51x + 18y + 160z  = 3$ bisects the acute angle and therefore origin lies in the acute angle.

The equation of the plane bisecting the obtuse angle between the planes $\displaystyle x+y+z= 1$ and $\displaystyle x+2y-4z= 5$ is

  1. $\displaystyle \left ( \sqrt{7}-1 \right )x+\left ( \sqrt{7}-2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  2. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  3. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}-4 \right )z=\sqrt{7}$

  4. None of these


Correct Option: D
Explanation:

Given planes are  $ x+y+z-1=0.....(1)$ and $x+2y-4z-5=0.........(2)$
Therefore equation of planes bisecting these planes are
$\dfrac{x+y+z-1}{\sqrt{3}}=\pm\dfrac{x+2y-4z-5}{\sqrt{21}}$

$\Rightarrow x+y+z-1=\pm\dfrac{x+2y-4z-5}{\sqrt{7}}$

$\Rightarrow (\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 ...(3)$ and $(\sqrt{7}+1) x+(\sqrt{7}+2)y+(\sqrt{7}-4)z = \sqrt{7}-5  ....(4)$
If $\theta$ is the angle between $(1)$ and $(3)$, then

$  \cos\theta = \dfrac{(\sqrt{7}-1).1+(\sqrt{7}-2).1+(\sqrt{7}+4).1}{(\sqrt{(\sqrt{7}-1)^2+(\sqrt{7}-2)^2+(\sqrt{7}+4)^2}).(\sqrt{3})}= \dfrac{3\sqrt{7}+2}{(\sqrt{40+2\sqrt{7}}).(\sqrt{3})}> \dfrac{1}{2}$

$\Rightarrow \theta > 45^\circ$
Hence, plane $(1)$ bisects the obtuse angle between the given planes.
Therefore equation of plane bisecting acute angle  between given plane is
$(\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 $

Hence, option 'D' is correct.

Let two planes $p _{1}:2x-y+z=2$, and $p _{2}:x+2y-z=3$ are given. The equation of the bisector of angle of the planes  $P _{1}$ and $P _{2}$ which does not contains origin, is

  1. $x-3y+2z+1=0$

  2. $x+3y=5$

  3. $x+3y+2z+2=0$

  4. $3x+y=5$


Correct Option: D
Explanation:
Given planes are $p _{1}:2x-y+z=2$ and $p _{2}:x+2y-z=3$

Normals to the planes
$N _1:\dfrac{1}{\sqrt{6}}(2,-1,1)$
$N _2:\dfrac{1}{\sqrt{6}}(1,2,-1)$

Let $N$ be the normal vector of angle bisector
$N=  N _1+N _2$ or $ N _1-N _2$
$N = (3,1,0)$ or $(1,-3,2)$

The equation of plane is
$P = P _1+ \lambda P _2$
$P= 2x-y+z-2 + \lambda (x+2y-z -3) $

If $N = (3,1,0)$, then $\lambda = 1$,
Equation of Plane $=  P = 3x+y- 5$
It does not pass through origin.

Hence, option D is correct.

The dist.of a point P on the ellipse $\cfrac{{{x^2}}}{{12}} + \cfrac{{{y^2}}}{4} = 1$ from centre is $\sqrt 6 $ then the eccentric angle of P is 

  1. $\cfrac{\pi }{2}$

  2. $\cfrac{\pi }{6}$

  3. $\cfrac{\pi }{4}$

  4. $\cfrac{\pi }{3}$


Correct Option: D
Explanation:
Let the point be $P = (a\cos\theta , b\sin\theta )$
 
Distance of point $P$ from centre is $\sqrt 6$
$\therefore \sqrt { { a }^{ 2 }\cos^{ 2 }\theta + b^{ 2 }\sin^{ 2 }\theta} = \sqrt { 6 }$
$\Rightarrow { a }^{ 2 }\cos^{ 2 }\theta + b^{ 2 }\sin^{ 2 }\theta = 6$
$\Rightarrow 12\cos^{ 2 }\theta + 4\sin^{ 2 }\theta = 6 \cos^{ 2 }\theta + \sin^{ 2 }\theta = 1$
$\Rightarrow 8\cos^{ 2 }\theta = 2$
$\Rightarrow \cos\theta = \cfrac { 1 }{ 2 }$
Hence, $\theta = \cfrac { \pi }{ 3 }$

Point $(1,2)$ lies _____ the ellipse $\dfrac{x^2}{16} + \dfrac{y^2}{9} = 1$.

  1. inside

  2. outside

  3. on

  4. None of the above


Correct Option: A
Explanation:

The region (disk) bounded by the ellipse is given by the equation:

$\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}\leq 1$ centered at $(h,k)$ ..... $(1)$
Point $(x,y)$ lies inside the ellipse if it satisfies $(1)$
Take $(x,y)=(1,2)$
Consider, $\dfrac{(x-0)^2}{16}+\dfrac{(y-0)^2}{9}$

                 $=\dfrac{1^{2}}{16}+\dfrac{2^{2}}{9}=\dfrac{73}{144}<1$
Hence, $(1,2)$ lies inside the given ellipse.

Eccentric angle of a point on the ellipse $x^{2}+3y^{2}=6$ at a distance $2$ units. from the centre of the ellipse is

  1. $2\pi/3$

  2. $\pi/3$

  3. $4\pi/3$

  4. $none\ of\ these$


Correct Option: B

Let the equation of the ellipse be $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$. Let $f(x,y) = \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - 1$. To determine whether the point $(x _1,y _1)$ lies inside the ellipse, the necessary condition is:

  1. $f(x _1,y _1) < 0$

  2. $f(x _1,y _1) > 0$

  3. $f(x _1,y _1) = 0$

  4. None of these


Correct Option: A
Explanation:

$f(x,y) = \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} - 1$ ........ $(1)

The region (disk) bounded by the ellipse is given by the equation:
$\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}\leq 1$ centered at $(h,k)$.

The given equation of ellipse is $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2} = 1$ centered at origin i.e. $(0,0)$.
The region bounded by this ellipse is 
$\dfrac{(x)^2}{a^2}+\dfrac{(y)^2}{b^2}\leq 1$ ...... $(1)$
The point $x _{1},y _{1}$ lies inside the given ellipse if it satisfies $(1)$
i.e. if $\dfrac{(x _{1})^2}{a^2}+\dfrac{(y _{1})^2}{b^2}\leq 1$ ...... $(1)$
if $\dfrac{(x _{1})^2}{a^2}+\dfrac{(y _{1})^2}{b^2} - 1<0$ ...... $(1)$
$\implies$ $f(x _{1}, y _{1})<0$  ....... From $(1)$
Hence, option A is correct.

The locus of a point whose distance form the point $(3,0)$ is $3/5$ times its distance from the line $x=p$ is an ellipse with centre at the origin. The value of $p$ is 

  1. $5$

  2. $7$

  3. $\dfrac{25}{3}$

  4. $\dfrac{25}{9}$


Correct Option: C