Tag: maths

Questions Related to maths

Let $\overrightarrow{A}$ be vector parallel to the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ through the origin. ${p} _{1}$ is parallel to the vectors $\overrightarrow{a}=2\hat{j}+3\hat{k}$ and $\overrightarrow{b}=4\hat{j}-3\hat{k}$ and ${p} _{2}$ is parallel to the vectors $\overrightarrow{c}=\hat{j}-\hat{k}$ and $\overrightarrow{d}=3\hat{i}+3\hat{j}$. The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is 

  1. $\dfrac{\pi}{2}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{3\pi}{4}$


Correct Option: B,D
Explanation:

Plane ${P} _{1}$ is parallel to $\overrightarrow{a}$ and $\overrightarrow{b}$.
The normal to ${P} _{1}$ is along $\overrightarrow{a}\times \overrightarrow{b}$.
Plane ${P} _{2}$ is parallel to $\overrightarrow{c}$ and $\overrightarrow{d}$.
The normal to ${P} _{2}$ is along $\overrightarrow{c}\times \overrightarrow{d}$.
$\overrightarrow{A}$ is along the line of intersection of planes ${P} _{1}$ and ${P} _{2}$.
$\therefore \overrightarrow{A}$ is along $\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)$
$\overrightarrow{a}\times\overrightarrow{b}=\left|\begin{matrix} \hat{i} &\hat{j}  &\hat{k}  \ 0 & 2 & 3 \ 0 &4  &-3  \end{matrix}\right|$
$=\left(-6-12\right)\hat{i}-0.\hat{j}+0.\hat{k}$ on simplification
$=-18\hat{i}$
$\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)$
$\overrightarrow{c}\times\overrightarrow{d}=\left|\begin{matrix} \hat{i} &\hat{j}  &\hat{k}  \ 0 & 1 & -1 \ 3 &3  &0 \end{matrix}\right|$
$=\left(0+3\right)\hat{i}-\left(0+3\right)\hat{j}+\left(0+3\right)\hat{k}$ on simplification
$=3\hat{i}-3\hat{j}-3\hat{k}$
$=3\left(\hat{i}-\hat{j}-\hat{k}\right)$
The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is  $\theta$
$\cos{\theta}=\dfrac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|}.\dfrac{\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$\pm\dfrac{\left(\hat{j}-\hat{k}\right).\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$\pm\dfrac{1}{\sqrt{2}}$
and $\cos{\theta}=\pm\dfrac{1}{\sqrt{2}}$
$\Rightarrow \theta=\dfrac{\pi}{4},\dfrac{3\pi}{4}$

Let $\overrightarrow{A}$ be vector parallel to the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ through the origin. ${p} _{1}$ is parallel to the vectors $\overrightarrow{a}=2\hat{j}+3\hat{k}$ and $\overrightarrow{b}=4\hat{j}-3\hat{k}$ and ${p} _{2}$ is parallel to the vectors $\overrightarrow{c}=\hat{j}-\hat{k}$ and $\overrightarrow{d}=3\hat{i}+3\hat{j}$. The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is:

  1. $\dfrac{\pi}{2}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{3\pi}{4}$


Correct Option: B,D
Explanation:

Plane ${p} _{1}$ is parallel to $\overrightarrow{a}$ and $\overrightarrow{b}$ the normal to ${p} _{1}$ is along $\overrightarrow{a}\times \overrightarrow{b}$ 
Plane ${p} _{2}$ is parallel to $\overrightarrow{c}$ and $\overrightarrow{d}$ the normal to ${p} _{2}$ is along $\overrightarrow{c}\times \overrightarrow{d}$
$\overrightarrow{A}$ is along the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ 
$\therefore \overrightarrow{A}$ is along $\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)$
$\overrightarrow{a}\times \overrightarrow{b}=\left[\begin{matrix} \hat{i} & \hat{j} & \hat{k} \ 0 & 2 &  3\ 0 & 4 & -3 \end{matrix}\right]$
$=\hat{i}\left(-6-12\right)-\hat{j}\left(0-0\right)+\hat{k}\left(0\right)$
$=-18\hat{i}$
$\overrightarrow{c}\times \overrightarrow{d}=\left|\begin{matrix} \hat{i} & \hat{j} & \hat{k} \ 0  & 1 & -1 \ 3 & 3 & 0 \end{matrix}\right|$
$=\hat{i}\left(0+3\right)-\hat{j}\left(0+3\right)+\hat{k}\left(0-3\right)$
$=3\hat{i}-3\hat{j}-3\hat{k}$
$=3\left(\hat{i}-\hat{j}-\hat{k}\right)$
$ \therefore \overrightarrow{A}$ is along $\hat{i}\times \left(\hat{i}-\hat{j}-\hat{k}\right)=\hat{j}-\hat{k}$
The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is $\theta$
$\cos{\theta}=\dfrac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|}.\dfrac{\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3}$
$   =\pm \dfrac{\left(\hat{j}-\hat{k}\right)\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$=\pm\dfrac{\left(1+2\right)}{3\sqrt{2}} = \pm \dfrac{1}{\sqrt{2}}$
and $\cos{\theta}=\pm \dfrac{1}{\sqrt{2}}$
$\Rightarrow \theta=\dfrac{\pi}{4},\dfrac{3\pi}{4}$

Let $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$ are such that $\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)=0$.Let ${p} _{1}$ and ${p} _{2}$ be the planes determined by the pairs of vectors $\overrightarrow{a},\overrightarrow{b}$ and $\overrightarrow{c},\overrightarrow{d}$ respectively . The angle between the planes ${p} _{1}$ and ${p} _{2}$ is

  1. $0$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{3}$

  4. $\dfrac{\pi}{2}$


Correct Option: A
Explanation:

The plane ${p} _{1}$ contains the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ into normal is along $\overrightarrow{a}\times \overrightarrow{b}$
The normal to plane ${p} _{2}$ is along  $\overrightarrow{c}\times \overrightarrow{d}$.
$\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)=0$
$\Rightarrow$ two normals are parallel
$\therefore$ the angle between the planes is zero

The equation of the bisector of the obtuse angle between the planes $3x+4y-5z+1=0, 5x+12y-13z=0$ is

  1. $11x+4y-3z=0$

  2. $14x-8y+13=0$

  3. $2x+8y-8z-1=0$

  4. $13x-7z+18=0$


Correct Option: C
Explanation:

Plane1 :$3x+4y-5z+1=0$

Plane2 :$5x+12y-12z=0$
let us construct a $||$gm $ABCD$ with $AB$ & $AD$ in direction of normal to plane $\bot$ & plane2 respectively.
$\overrightarrow { AB } =3\hat { i } +4\hat { j } -5\hat { k } \ \overrightarrow { AD } =5\hat { i } +12\hat { j } -13\hat { k } $
$\therefore \overrightarrow { AC } $ will be the acute angle bisector whereas $\overrightarrow { BD } $ will be in direction of obtuse angle bisector to the normals.
$\overrightarrow { AC } =\overrightarrow { AB } +\overrightarrow { AD } $ (by $||$gm law of addition )
$\overrightarrow { BD } =\overrightarrow { AB } -\overrightarrow { AD } $ (by $\triangle$ law of addition)
$\therefore \overrightarrow { BD } =-2\hat { i } -8\hat { j } +8\hat { k } $ is the direction of the normal to the plane through obtuse angle bisector plane1 & plane2.
$\therefore$ Equation of plane through the line of  intersection of plane1 & plane2
$(3x+4y-5z+1)+\lambda (5x+12y-13z)=0\ (3+5\lambda )x+(4+12\lambda )y+(-5-13\lambda )+1=0$
The above plane should be parallel to the plane formed  as it is normal.
$\therefore \dfrac { 3+5\lambda  }{ -2 } =\dfrac { 4+12\lambda  }{ -8 } =\dfrac { -5-13\lambda  }{ 8 } \ \Rightarrow \lambda =-1$
$\therefore $ The required plane is ,
$-2x-8y+8z+1=0\ \Rightarrow 2x+8y-8z-1=0$

The equations of the plane which passes through $(0, 0, 0)$ and which is equally inclined to the planes $x-y+z-3=0$ and $x+y+z+4=0$ is/are-

  1. $y=0$

  2. $x=0$

  3. $x+y=0$

  4. $x+z=0$


Correct Option: A,D
Explanation:

The equations of the plane which is equally inclined to the planes $x-y+z-3=0$ and $x+y+z+4=0$ is/are- 
$\dfrac { x-y+z-3 }{ \sqrt { { 1 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } }  } \pm \dfrac { x+y+z+4 }{ \sqrt { { 1 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } }  } =0$
$\Rightarrow x+z=-1$ and $y=\dfrac { -7 }{ 2 } $
If the plane contains origin
Then desired planes are $x+z=0$ & $y=0$

Ans: A,D

The angle between planes $\overline { r } .\left( 2\overline { i } -3\overline { j } +4\overline { k }  \right) +11=0$ and $\overline { r } .\left( 3\overline { i } -2\overline { j } -3\overline { k }  \right) +27=0$ is

  1. $\cfrac{\pi}{6}$

  2. $\cfrac{\pi}{4}$

  3. $\cfrac{\pi}{3}$

  4. $\cfrac{\pi}{2}$


Correct Option: D
Explanation:

$cos \theta = \dfrac{ a _1 \, a _2 + b _1 \, b _2 + c _1 \, c _2}{\sqrt{a _1^2 + b _1^2 + c _1^2} \sqrt{a _2^2 + b^2 _2 + c _2^2}}$

$\Rightarrow cos \theta = \dfrac{6 + 6 - 12}{\sqrt{4 + 9 + 16} \sqrt{9 + 4 + 9}}$
$\therefore cos \theta = 0$
$\therefore \theta = \dfrac{\pi}{2}$

Find the equation of the bisector planes of the angles between the planes $2x - y + 2z + 3 = 0$ and $3x - 2y + 6z + 8 = 0$.

  1. $ 5x-y-4z-22=0$

  2. $ 23x-13y+32z+26 = 0 $

  3. $ 19x-y-4z+26 = 0 $

  4. none of these


Correct Option: A,B
Explanation:

Equation of the planes is $2x-4y+2z+3=0$ and $3x-2y+6z+8=0$
Then equation of the plane bisection the angles between them are
$\displaystyle \frac { 2x-4y+2z+3 }{ \sqrt { 4+16+4+9 }  } =\pm \frac { 3x-2y+6z+8 }{ \sqrt { 9+4+36+64 }  } $
$\displaystyle \Rightarrow \frac { 2x-4y+2z+3 }{ \sqrt { 33 }  } =\pm \frac { 3x-2y+6z+8 }{ \sqrt { 113 }  } $
$\Rightarrow 5x-y-4z-22=0$ and $23x-13y+32z+26=0$

The angle between two planes is equal to

  1. the angle between the tangents to them from any point

  2. the angle between the normals to them from any point

  3. the angle between the lines parallel to the planes from any point

  4. None of the above


Correct Option: D
Explanation:

The angle between two intersecting planes is equal to the acute angle determined by the normal vectors of the two planes.

This is different from the angle between the normals to the planes from any point.

lf the planes $ x+2y-z+5=0,\ 2x-ky+4z+3=0$ are perpendicular, then $ {k} $ is

  1. $1$

  2. $-1$

  3. $0$

  4. $2$


Correct Option: B
Explanation:

I am using the constant $\lambda$ instead of $k$ to avoid the confusion. 

The normals to the planes are given by $i+2j-k$ and $2i-\lambda j+4k$, respectively. 
Since, they are perpendicular dot product between normals are zero. 
Thus, $(i+2j-k).(2i-\lambda+4k)=0$. 
$\Rightarrow2-2\lambda-4=0 \Rightarrow \lambda=-1$

In the space the equation $by+ cz+ d= 0$ represents a plane perpendicular to the plane:

  1. $YOZ$

  2. $ZOX$

  3. $XOY$

  4. $Z= k$


Correct Option: A
Explanation:

Consider $P : bx+cz+d=0$
a) Equation of $YOZ$ plane is $x=0$
Since, $(i).(bj+ck)=0$
Therefore, $P$ is perpendicular to $YOZ$

b)  Equation of $ZOX$ plane is $y=0$
Since, $(j).(bj+ck)=b \neq 0$
Therefore, $P$ is not perpendicular to $ZOX$

c)  Equation of $XOY$ plane is $z=0$
Since, $(k).(bj+ck)=c \neq 0$
Therefore, $P$ is not perpendicular to $XOY$

d)  Consider. $z=k$
Since, $(k).(bj+ck)=c \neq 0$
Therefore, $P$ is not perpendicular to $z=k$

Ans: A