Tag: angle between planes

Questions Related to angle between planes

Find the planes bisecting the acute angle between the planes $x-y+2x+1=0$ and $2x+y+z+2=0$

  1. $x+z-1=0$

  2. $x+z+1=0$

  3. $x-z-1=0$

  4. None of these


Correct Option: B
Explanation:

Given planes are $x-y+2{z}+1=0,2{x}+y+z+2=0$

The plane bisecting the acute angle between the planes will be $\dfrac{x-y+2{z}+1}{\sqrt{1+1+4}}=-\dfrac{2{x}+y+z+2}{\sqrt{4+1+1}}$
$\implies x+z+1=0$

The planes $x-3y+4z-1=0$ and $kx-4y+3z-5=0$ are perpendicular then value of $k$ is

  1. $24$

  2. $-24$

  3. $12$

  4. $0$


Correct Option: B
Explanation:
Let direction ratios of the perpendicular to the plane 
$x-3y+4z-1=4$ are $a _{2}=1, b _{1}=-3, c _{1}=4$
and that of planes will be perpendicular if 
$a _{1}a _{2}+b _{1}b _{2}+c _{1}c _{2}=0$
$k+(-3) \times (-4)+4 \times{3}=0$
$k+12+12=0$
$k=-24$








The equation of the plane which bisects the angle between the planes $3x-6y+2z+5=0$ and $4x-12y+3z-3=0$ which contains the origin is ?

  1. $33x-13y+32z+45=0$

  2. $x-3y+z-5=0$

  3. $33x+13y+32z+45=0$

  4. $None\ of\ these$


Correct Option: D
Explanation:

Given ,

The required equation of plane bisects the given two planes.
$\begin{array}{l} \therefore \frac { { 3x-6y+2z+5 } }{ { \sqrt { { 3^{ 2 } }+{ { \left( { -6 } \right)  }^{ 2 } }+{ { \left( 2 \right)  }^{ 2 } } }  } } =\pm \frac { { 4x-12y+3z-3 } }{ { \sqrt { { 4^{ 2 } }+{ { \left( { -12 } \right)  }^{ 2 } }+{ 3^{ 2 } } }  } }  \ \frac { { 3x-6y+2z+5 } }{ { \sqrt { 49 }  } } =\pm \frac { { 4x-12y+3z-3 } }{ { \sqrt { 169 }  } }  \ \frac { { 3x-6y+2z+5 } }{ 7 } =\pm \frac { { 4x-12y+3z-3 } }{ { 13 } }  \ 39x-78y+26z+65=\pm 28x-84y+21z-21 \end{array}$
Now, solving for the positive value, we get
$39x - 78y + 26z + 65$.........(i)
or,  $11x + 6y + 5z + 36 = 0$
And for negative value, we get
$\begin{array}{l} 39x-78y+26z+65=-\left( { 28x-84y+21z-21 } \right)  \ or,\, \, 67x-162y+47z+44=0.......\left( { ii } \right)  \end{array}$
$\because $None of the answer matches with the given equation.
Hence,
Option $D$ is correct  in this case.

The corner of a square OPQR is folded up so that the plane OPQ is perpendicular to the plane OQR, the angle between OP and QR is 

  1. $\dfrac { \pi }{ 2 } $

  2. $\dfrac { \pi }{ 3 } $

  3. $\dfrac { \pi }{ 4 } $

  4. $\dfrac { \pi }{ 6 } $


Correct Option: A

The angle between the plane passing through the points $A(0,\ 0,\ 0),\ B(1,\ 1,\ 1),\ C(3,\ 2,\ 1)$ & the plane passing through $A(0,\ 0,\ 0),\ B(1,\ 1,\ 1),\ D(3,\ 1,\ 2)$ is

  1. $90^{o}$

  2. $45^{o}$

  3. $120^{o}$

  4. $30^{o}$


Correct Option: C
Explanation:

$\begin{array}{l} { \pi _{ 1 } }=ax+by+cz=0 \ a+b+c=0 \ 3a+2b+c=0 \ \frac { a }{ { -1 } } =\frac { { -b } }{ { 1-3 } } =\frac { c }{ { 2-3 } }  \ \frac { a }{ { -1 } } =\frac { b }{ 2 } =\frac { c }{ { -1 } }  \ -x+2y-z=0 \ { \pi _{ 1 } }:\, x-2y+z=0 \ and, \ { \pi _{ 2 } }=ax+by+cz=0 \ a+b+c=0 \ 3a+b+2c=0 \ \frac { a }{ 1 } =\frac { { -b } }{ { 2-3 } } =\frac { c }{ { 1-3 } }  \ \frac { a }{ 1 } =\frac { b }{ 1 } =\frac { c }{ { -2 } }  \ { \pi _{ 2 } }:\, x+y-2z=0 \ Now, \ \cos  \theta =\frac { { \left( { 1-2-2 } \right)  } }{ { \sqrt { 6 } \sqrt { 6 }  } } =\frac { { -3 } }{ 6 } =\frac { { -1 } }{ 2 }  \ \therefore \theta ={ 120^{ \circ  } } \ Hence,\, the\, option\, C\, is\, the\, correct\, answer. \end{array}$

The angle between the planes
$\vec{r}(\hat{i}+2\hat{j}+\hat{k})=4$ and $\vec{r}(\hat{-i}+\hat{j}+2\hat{k})=9$

  1. $30^{\mathrm{o}}$

  2. $60^{\mathrm{o}}$

  3. $45^{\mathrm{o}}$

  4. $90^{0}$


Correct Option: B
Explanation:

Angle between two planes is the angle between their normal vectors.

For the first plane, normal vector is $\vec{n _0}=(1,2,1)$
For second plane, normal vector is $\vec{n _1}=(-1,1,2)$
Let $\theta$ be the angle between the planes, it is also the angle between their normals.
$\implies \cos \theta = \dfrac{{n} _{1}.{n} _{2}}{|n _1||n _2|} $

$\implies \cos \theta = \dfrac{(1,2,1)\cdot (-1,1,2)}{\sqrt{1^2+2^2+1^2}\sqrt{(-1)^2+1^2+2^2}} $

$\implies \cos \theta = \dfrac{-1+2+2}{6}=\dfrac{1}{2}$
$\implies \theta $ = $ {60}^{o}$

What is the cosine of angle between the planes $x + y + z + I = 0$ and $2x-2y+2x+I=0$ ?

  1. $\dfrac{1}{2}$

  2. $\dfrac{1}{3}$

  3. $\dfrac{2}{3}$

  4. None of the above


Correct Option: B
Explanation:

The given planes are $x+y+x+I=0$ and $2x-2y+2z+I=0$ 

For two planes,  $a _{ 1 }x+b _{ 1 }y+c _{ 1 }z+d _{ 1 }=0$ and $ a _{ 2 }x+b _{ 2 }y+c _{ 2 }z+d _{ 2 }=0$ the cosine of the angle between them is,

$\cos\theta =\dfrac { a _{ 1 }a _{ 2 }+b _{ 1 }b _{ 2 }+c _{ 1 }c _{ 2 } }{ \sqrt { a _{ 1 }^{ 2 }+b _{ 1 }^{ 2 }+c _{ 1 }^{ 2 } } \sqrt { a _{ 2 }^{ 2 }+b _{ 2 }^{ 2 }+c _{ 2 }^{2} }  } $

So, for the given planes we have
$\cos\theta =\dfrac { 1\times 2+1\times (-2)+1\times 2 }{ \sqrt { 3 } \sqrt { 12 }  } =\dfrac { 2 }{ 6 } =\dfrac { 1 }{ 3 } $
Hence, option B is correct.

The angle between the planes $2x-3y-6z=5$ and $6x+2y-9z=4$ is

  1. ${\cos ^{ - 1}}\left( {\dfrac{{30}}{{77}}} \right)$

  2. ${\cos ^{ - 1}}\left( {\dfrac{{40}}{{77}}} \right)$

  3. ${\cos ^{ - 1}}\left( {\dfrac{{50}}{{77}}} \right)$

  4. ${\cos ^{ - 1}}\left( {\dfrac{{60}}{{77}}} \right)$


Correct Option: D
Explanation:

${ P } _{ 1 }:2x-3y-6z=5\ { P } _{ 2 }:6x+2y-9z=4$


Angle between plane is angle between normals.


$\therefore \cos { \theta  } =\cfrac { 2\times 6+(-3)\times 2+(-6)(-9) }{ \sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 6 }^{ 2 } } \sqrt { { 6 }^{ 2 }+{ 2 }^{ 2 }+{ 9 }^{ 2 } }  } =\cfrac { 60 }{ 77 } $

$ \theta =\cos ^{ -1 }{ \left (\cfrac { 60 }{ 77 } \right ) } $

A line lies in $YZ-$plane and makes angle of $30^o$ with the $Y-$axis, then its inclination to the $Z-$axis is 

  1. $30^o$ or $60^o$

  2. $60^o$ or $90^o$

  3. $60^o$ or $120^o$

  4. $30^o$ or $150^o$


Correct Option: C
Explanation:

since line lies on $y-z$ plane $\alpha ={ 90 }^{ 0 }$

$\beta ={ 30 }^{ 0 }$
$\therefore \cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$
$\therefore \cos ^{ 2 }{ { 30 }^{ 0 } } +\cos ^{ 2 }{ { 30 }^{ 0 } } +\cos ^{ 2 }{ \gamma  } =1$
$\cos ^{ 2 }{ \gamma  } =\cfrac { 1 }{ 4 } \Rightarrow \cos { \gamma  } =\pm \cfrac { 1 }{ 2 } $
$\gamma ={ 60 }^{ 0 },{ 120 }^{ 0 }$
Ans: $C$

If vectors $\bar{b}=\left(\tan\alpha, -1 2\sqrt{\sin \dfrac{\alpha}{2}}\right)$ and $\bar{c}=\left(\tan \alpha , \tan\alpha -\dfrac{3}{\sqrt{\sin \alpha/2}}\right)$ are orthogonal and vector $\bar{a}=(1, 3, \sin 2\alpha)$ make an obtuse angle with the z-axis, then?

  1. $\alpha =\tan^{-1}(-2)$

  2. $\alpha =\tan^{-1}(-3)$

  3. $\alpha =\tan^{-1}(2)$

  4. $-2 < \alpha < 0$


Correct Option: D