Tag: maths

Questions Related to maths

The sum of the squares of deviation of 10 observations from their mean 50 is 250, then coefficient of variation is

  1. 10%

  2. 40%

  3. 50%

  4. none of these


Correct Option: A
Explanation:

Given,   $\sum (x-\bar{x})^2 = 250, n = 10, \bar{x} =50$
Thus standard deviation $ = \sqrt{\cfrac{\sum (x-\bar{x})^2}{n}}=\sqrt{25}=5$
$\therefore$ Coefficient of variation $=\cfrac{\sigma}{\bar{x}}\times 100 =\cfrac{5}{50}\times 100$ % $= 10$%

The mean of a distribution is 4. If its coefficient of variation is 58%. Then the S.D. of the distribution is

  1. 2.23

  2. 3.23

  3. 2.32

  4. none of these


Correct Option: C
Explanation:

Given,  mean $\bar{x} = 4,$ and coefficient of variation $=58$ %
If S.D of the given distribution is $\sigma$ then we know that,
Coefficient of variation $=\cfrac{\sigma}{\bar{x}}\times 100$ %
$\Rightarrow 58 = \cfrac{\sigma}{4}\times 100\Rightarrow \sigma = \cfrac{58\times 4}{100}=2.32$

For the given data, SD = 10, AM = 20, the coefficient
of variation is____

  1. 47

  2. 24

  3. 44

  4. 50


Correct Option: D
Explanation:

Coeffecient of variation $ = \frac {SD}{AM} \times 100 = \frac {10}{20} \times 100 = 50 $

For the given data, SD $= 10$, AM $= 20$ the coefficient of variation is ...........

  1. $47$

  2. $24$

  3. $44$

  4. $50$


Correct Option: D
Explanation:

Coefficient of variation is the ratio of standard deviation to the mean.


Given that $SD=10$ and $AM=20$

Therefore of coefficient of variation is $\dfrac{SD}{AM}\times100=\dfrac{10}{20}\times100=50\%$

The mean of a distribution is $14$ and standard deviation is $5$. What is the value of the coefficient of variation?

  1. $57.7\%$

  2. $45.7\%$

  3. $35.7\%$

  4. None of these


Correct Option: C
Explanation:

Coefficient of variation is given by $CV = \dfrac{SD}{Mean}\times 100 $
$\Rightarrow \dfrac{5}{14}\times 100 = 35.7\%$

If the standard deviation of a set of scores is $1.2$ and their mean is $10$, then the coefficient of variation of the scores is

  1. $12$

  2. $0.12$

  3. $20$

  4. $120$


Correct Option: A
Explanation:

Given : standard deviation$(\sigma)=1.2,$ mean$(\overline {X})=10$.

Coefficient of variation(C.V.) $=\dfrac{\sigma}{\overline {X}}\times 100=\dfrac{1.2}{10}\times 100=12$
$\therefore$ C.V. $=12$
Hence, option $A$ is correct.

If $n=10, \bar{x}=12$ and $\sum x^2=1530$, then calculate the coefficient of variation.

  1. $20$

  2. $25$

  3. $30$

  4. $35$


Correct Option: B
Explanation:

$\sigma=\sqrt{\dfrac{\sum x^2}{n}-\left(\dfrac{\sum x}{n}\right)^2}$

   
   $=\sqrt{\dfrac{1530}{10}-(12)^2}$

   $=\sqrt{153-144}$
   $=\sqrt{9}$
   $=3$

Coefficient of variation $=\dfrac{\sigma}{\overline{x}}\times 100$

                                       $=\dfrac{3}{12}\times 100$

                                       $=\dfrac{1}{4}\times 100$
                                       $=25$

Two lines $L _{1} :2x+3y-5=0$ and $L _{2} :3x-4y+1=0$ intersect a point $P$ and make an angle $\theta$ with each other. Equation of a line which passes through $P$ and makes an angle $(\pi/2-\theta)$ with the line $L _{1}$ is

  1. $16x+64y+79=0$ and $4x+3y+7=0$

  2. $16x+63y-79=0$ and $4x+3y+7=0$

  3. $16x-63y+79=0$ and $4x-3y+7=0$

  4. $16x-63y-79=0$ and $4x-3y+7=0$


Correct Option: A

If the line $3x+4y=\sqrt{7}$ touches the ellipse $3x^{2}+4y^{2}=1$, then the point of contact is 

  1. $(\dfrac{1}{\sqrt{7}},\dfrac{1}{\sqrt{7}})$

  2. $(\dfrac{1}{\sqrt{3}},-\dfrac{1}{\sqrt{3}})$

  3. $(\dfrac{1}{\sqrt{7}},-\dfrac{1}{\sqrt{7}})$

  4. None of these


Correct Option: A
Explanation:

$\begin{array}{l} 3{ x^{ 2 } }+4{ y^{ 2 } }=1 \ Equation\, of\, \tan  gent\, to\, ellipse\, at\, \left( { { x _{ 1 } },{ y _{ 1 } } } \right)  \ 3x{ x _{ 1 } }+4y{ y _{ 1 } }=1 \ \frac { { 3x } }{ { \sqrt { 7 }  } } +\frac { { 4y } }{ { \sqrt { 7 }  } } =1 \ { x _{ 1 } }=\frac { 1 }{ { \sqrt { 7 }  } } \, \, \, \, \, { y _{ 1 } }=\frac { 1 }{ { \sqrt { 7 }  } }  \ \left( { \frac { 1 }{ { \sqrt { 7 }  } } ,\frac { 1 }{ { \sqrt { 7 }  } }  } \right)  \ Hence, \ option\, \, A\, is\, correct\, answer. \end{array}$

A graph with all vertices having equal degree is known as a .....

  1. Multi Graph

  2. Regular Graph

  3. Simple Graph

  4. Complete Graph


Correct Option: B