Tag: maths

Questions Related to maths

If $x=\sqrt{2}+1, y=\sqrt{17}-\sqrt{2}$, then .............

  1. $x< y$

  2. $x>y$

  3. $x=y$

  4. $x\ge y$


Correct Option: A
Explanation:

$\sqrt{2} =1.414$

$\sqrt{17} =4.123$

Hence,

$x = \sqrt{2}+1 =1.414+1 = 2.414$

$ y= \sqrt{17} -\sqrt{2} =4.123- 1.414 = 2.709$

Hence , $x<y$

$\sqrt{11}-\sqrt{10}$ $\Box$ $ \sqrt{12}-\sqrt{11}$

  1. $<$

  2. $>$

  3. $=$

  4. cannot be determined


Correct Option: B
Explanation:

$\sqrt{11} =3.316$

$\sqrt{10} =3.162$

$\sqrt{12} =3.464$

Hence,

$\sqrt{11} -\sqrt{10} =3.316-3.162 = 0.154$

$\sqrt{12} -\sqrt{11} =3.464-3.316 = 0.148$

Hence , $\sqrt{11} -\sqrt{10} >\sqrt{12} -\sqrt{11}$

Which among the following numbers is the greatest?
$\displaystyle \sqrt[3]{4},\sqrt{2},\sqrt[6]{13},\sqrt[4]{5}$

  1. $\displaystyle \sqrt[3]{4}$ is the greatest

  2. $\sqrt{2}$ is the greatest

  3. $\sqrt[6]{13}$ is the greatest

  4. $\sqrt[4]{5}$ is the greatest


Correct Option: A
Explanation:

LCM of $3, 6, 4 = 12$

So, raising each given number to power $12$.
$\Rightarrow \sqrt[3]{4}=(4)^{1/3}=(4^{1/3})^{12}=4^{4}=256$
$\Rightarrow \sqrt{2}=(2)^{1/2}=(2^{1/2})^{12}=2^{6}=64$
$\Rightarrow \sqrt[6]{13}=(13)^{1/6}=(13^{1/6})^{12}=13^{2}=169$
$\Rightarrow \sqrt[4]{5}=(5)^{1/4}=(15^{1/4})^{12}=5^{3}=125$

$\therefore \sqrt[3]{4}$ is the greatest.

If $x=\sqrt{7}-\sqrt{5}, y=\sqrt{13}-\sqrt{11}$, then:

  1. $x=y$

  2. $x> y$

  3. $x< y$

  4. $x\ge y$


Correct Option: B
Explanation:

$x = \sqrt{7}-\sqrt{5}$

$= 2.64 – 2.23= 0.41$

$y=  \sqrt{13}-\sqrt{11}$

$= 3.60- 3.31 = 0.29$

$Hence, x> y$

If $A=\sqrt{7}-\sqrt{6}$ and $B=\sqrt{6}-\sqrt{5}$, then identify the true statement.

  1. $A> B$

  2. $A=B$

  3. $A< B$

  4. $A\ge B$


Correct Option: C
Explanation:
$A=\sqrt{7}-\sqrt{6}\Rightarrow \dfrac{1}{A}=\dfrac{\sqrt{7}+\sqrt{6}}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}$
$\Rightarrow \boxed{\dfrac{1}{A}=\sqrt{7}+\sqrt{6}}$
$\boxed{\dfrac{1}{B}=\sqrt{6}+\sqrt{5}}$
As $\sqrt{7} > \sqrt{5}\Rightarrow \dfrac{1}{A} > \dfrac{1}{B}$
$\Rightarrow \boxed{B > A}$

The smallest between $\sqrt{17} - \sqrt{12}$ and $\sqrt{11} - \sqrt{6}$ is _________.

  1. $\sqrt{17} - \sqrt{12}$

  2. $\sqrt{11} - \sqrt{6}$

  3. Both are equal

  4. Can't be determined


Correct Option: A
Explanation:

$\sqrt{17} \approx 4.123$

$\sqrt{12} \approx 3.464$
$\sqrt{11} \approx 3.316$
$\sqrt{6} \approx 2.449$

$\Rightarrow \sqrt{17} - \sqrt{12} = 0.659$
$\Rightarrow \sqrt{11} - \sqrt{6} = 0.867$

Hence, $\sqrt{17}-\sqrt{12}$ is smaller.

The smallest of $\sqrt [ 3 ]{ 4 } , \sqrt [ 4 ]{ 5 } , \sqrt [ 4 ]{ 6 } , \sqrt [ 3 ]{ 8 } $ is:

  1. $\sqrt [ 3 ]{ 8 } $

  2. $\sqrt [ 4 ]{ 5 } $

  3. $\sqrt [ 3 ]{ 4 } $

  4. $\sqrt [ 4 ]{ 6 } $


Correct Option: B
Explanation:
$\sqrt[3]{4}=\sqrt[12]{44}=\sqrt[12]{256}$
$\sqrt[4]{6}=\sqrt[12]{5^3}=\sqrt[12]{125}$
$\sqrt[4]{6}=\sqrt[12]{6^{3}}=\sqrt[12]{216}$
$\sqrt[3]{8}=\sqrt[12]{8^{4}}=\sqrt[12]{64^{2}}$
As $'125'$ is smallest
$\therefore \boxed{4\sqrt{5}}$ is smallest

Let x and y be rational and irrational numbers, respectively, then x + y necessarily an irrational number.


State True or False.

  1. True

  2. False


Correct Option: A
Explanation:

Yes.

Let x $= 21, y =\sqrt{2}$ be a rational number
Now $x+y=21 +\sqrt{2}=21+1.4142....=22.4142....$ , which is non-terminating and non-recurring. Hence x+y is irrational.

If $A=\sqrt [ 3 ]{ 3 } , B=\sqrt [ 4 ]{ 5 } $, then which of the following is true?

  1. $A=\cfrac{3}{5}B$

  2. $A< B$

  3. $A> B$

  4. $A={B}^{4/5}$


Correct Option: B
Explanation:
$A=3^{\dfrac{1}{3}}=\sqrt[12]{34}=\sqrt[12]{81}$
$B=5^{\dfrac{1}{4}}=\sqrt[12]{5^{3}}=\sqrt[12]{125}$
As $125 > 81$
$\Rightarrow \boxed{B > A}$

The descending order of the surds $\sqrt[3]{2} , \sqrt[6]{3} , \sqrt[9]{4}$ is _________.

  1. $\sqrt[9]{4} , \sqrt[6]{3} , \sqrt[3]{2}$

  2. $\sqrt[9]{4} , \sqrt[3]{2} , \sqrt[6]{3}$

  3. $\sqrt[3]{2} , \sqrt[6]{3} , \sqrt[9]{4}$

  4. $\sqrt[6]{3} , \sqrt[9]{4} , \sqrt[3]{2}$


Correct Option: C
Explanation:

$\sqrt[3]{2} \approx 1.26$

$\sqrt[6]{3} \approx 1.201$
$\sqrt[9]{4} \approx 1.166$

$\therefore$ Ascending order is $\sqrt[9]{4} < \sqrt[6]{3} < \sqrt[3]{2}$