Tag: maths

Questions Related to maths

$if\,A\, = \sqrt 7  - \sqrt 6 \,and\,B = \,\sqrt 6  - \sqrt {5,} \,then\,$

  1. $A > B$

  2. $A = B$

  3. $A < B\,$

  4. $A \geqslant B$


Correct Option: C
Explanation:
Given numbers are $A=\sqrt{7}-\sqrt{6}$ and $B=\sqrt{6}- \sqrt{5}$
Let $x =\sqrt{5}$ and $y= \sqrt{7}$ then by
$A.M$ and $G.M$
$\dfrac{x+y}{2} \le \sqrt{\dfrac{x^{2}+y^{2}}{2}}$
$\Rightarrow \dfrac{\sqrt{5}+ \sqrt{7}}{2} \le \sqrt{6}$
$\Rightarrow \sqrt{5}+ \sqrt{7} \le 2 \sqrt{6}$
$\Rightarrow \sqrt{7}- \sqrt{6} \le \sqrt{6} - \sqrt{5}$

Which of the following numbers is the least ?
$\displaystyle (0.5)^{2},\sqrt{0.49},\sqrt[3]{0.008},0.23$

  1. $\displaystyle (0.5)^{2}$

  2. $\displaystyle \sqrt{0.49}$

  3. $\displaystyle \sqrt[3]{0.008}$

  4. 0.23


Correct Option: C
Explanation:

$ (0.5)^{2}=0.25$
$\sqrt{0.49}=0.7;$
$ \sqrt[3]{0.008}=\sqrt[3]{.2^3}=0.2$
$0.23$
Arranging in ascending order the numbers are $0.2< 0.23< 0.25< 0.7$
$ \therefore \sqrt[3]{0.008}=0.2$ is the least

The greatest number among $\displaystyle \sqrt[3]{2},\sqrt{3},\sqrt[3]{5}$ and $1.5$ is 

  1. $\displaystyle \sqrt[3]{2}$

  2. $\displaystyle \sqrt{3}$

  3. $\displaystyle \sqrt[3]{5}$

  4. $1.5$


Correct Option: B
Explanation:

LCM of $3, 2 = 6$
Given numbers are $ \sqrt[3]{2},\sqrt{3},\sqrt[3]{5}, 1.5$ i.e,
$ 2^{1/3},3^{1/2},5^{1/3},1.5$
$ \therefore $ Raising each number to power $6$, we get
$ (2^{1/3})^{6},(3^{1/2})^{6},(5^{1/3})^{6}, (1.5)^{6}$

$= 2^{2},3^{3},5^{2}, \left(\cfrac{3}{2}\right)^{6}$
$=4,27,25,\cfrac{729}{64}$
Of all these numbers, $27$ is the greatest.
$ \Rightarrow \sqrt{3}$ is the greatest. 

The smallest of $\displaystyle \sqrt{8}+\sqrt{5},\sqrt{7}+\sqrt{6},\sqrt{10}+\sqrt{3}$ and $\displaystyle \sqrt{11}+\sqrt{2}$ is 

  1. $\displaystyle \sqrt{8}+\sqrt{5}$

  2. $\displaystyle \sqrt{7}+\sqrt{6}$

  3. $\displaystyle \sqrt{10}+\sqrt{3}$

  4. $\displaystyle \sqrt{11}+\sqrt{2}$


Correct Option: D
Explanation:

$\displaystyle \sqrt{8}+\sqrt{5}=2.83+2.24=5.07$
$\displaystyle \sqrt{7}+\sqrt{6}=2.65+2.45=5.09$
$\displaystyle \sqrt{10}+\sqrt{13}=3.16+3.61=6.77$
$\displaystyle \sqrt{11}+\sqrt{12}=3.32+1.41=4.73$
$\displaystyle \therefore $ Smallest is $\displaystyle \sqrt{11}+\sqrt{2}$

Which one of the following set of surds is correct sequence of ascending order of their values?

  1. $\displaystyle \sqrt[4]{10},\sqrt[3]{6},\sqrt{3}$

  2. $\displaystyle \sqrt{3},\sqrt[4]{10},\sqrt[3]{6},$

  3. $\displaystyle \sqrt{3},\sqrt{10},\sqrt[3]{6},$

  4. $\displaystyle \sqrt[4]{10},\sqrt{3},\sqrt[3]{6}$


Correct Option: B
Explanation:

$\sqrt[4]{10},\sqrt[3]{6},\sqrt{3}$
The order of the given irrational numbers are 2,3,4.
LCM of (2,3,4)=12
Now convert each irrational number as of order 12
$\sqrt[4]{10}=\sqrt[12]{10^3}=\sqrt[12]{1000}$
$\sqrt[3]{6}=\sqrt[12]{6^4}=\sqrt[12]{1296}$
$\sqrt{3}=\sqrt[12]{3^6}=\sqrt[12]{729}$
Hence, ascending order$\sqrt{3}<\sqrt[4]{10}<\sqrt[3]{6}$

Which is the greatest out of the following ?

  1. $\displaystyle \sqrt[3]{1.728}$

  2. $\displaystyle \frac{\sqrt{3}-1}{\sqrt{3}+1}$

  3. $\displaystyle \left ( \frac{1}{2} \right )^{-2}$

  4. $\displaystyle \frac{17}{8}$


Correct Option: C
Explanation:
$\Rightarrow  \sqrt[3]{1.728}=1.2$

$\Rightarrow \cfrac{\sqrt{3}-1}{\sqrt{3}+1}=\cfrac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\cfrac{3+1-2\sqrt{3}}{3-1}$
$ =\cfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}$
$ =2-1.732=0.268$

$\Rightarrow \left ( \cfrac{1}{2} \right )^{-2}=2^{2}=4$

$\Rightarrow \cfrac{17}{8}=2.2125$

$ \therefore \left ( \cfrac{1}{2} \right )^{-2}$ is the greatest. 

$4\sqrt{18}$ $=$ $12\sqrt{2}$
State true or false

  1. True

  2. False


Correct Option: A
Explanation:

Consider $4\sqrt { 18 }$ and factorize it as follows:

 
$4\sqrt { 18 } =4\sqrt { 2\times 3\times 3 } =4\sqrt { 2\times 3^{ 2 } } =4\times 3\sqrt { 2 } =12\sqrt { 2 }$
 
Hence, $4\sqrt { 18 } =12\sqrt { 2 }$    

Which is greater $\displaystyle (\sqrt{7}+\sqrt{10})$ or $\displaystyle (\sqrt{3}+\sqrt{19})$?

  1. $\displaystyle \sqrt{7}+\sqrt{10}$

  2. $\displaystyle \sqrt{3}+\sqrt{19}$

  3. Both are equal

  4. None of these


Correct Option: B
Explanation:

$(\sqrt{7}+\sqrt{10})$
$2.6457+3.1622=5.8079$
$(\sqrt{3}+\sqrt{19})$
$1.732+4.358=6.090$
Hence $(\sqrt{3}+\sqrt{19})$is greater.

$\displaystyle \sqrt[4]{3},\sqrt[6]{10},\sqrt[12]{25}$, when arranged in descending order will be 

  1. $\displaystyle \sqrt[4]{3},\sqrt[6]{10},\sqrt[12]{25}$

  2. $\displaystyle \sqrt[6]{10},\sqrt[4]{3},\sqrt[12]{25}$

  3. $\displaystyle \sqrt[6]{10},\sqrt[12]{25},\sqrt[4]{3}$

  4. $\displaystyle \sqrt[4]{3},\sqrt[12]{25},\sqrt[6]{10}$


Correct Option: B
Explanation:

LCM of $4, 6$ and $12 = 12$.
$ \therefore $ Raising each of the given number to power $12$, we have 
$ (3^{1/4})^{12},(10^{1/6})^{12},(25^{1/12})^{12}$
$= 3^{3},10^{2},25$
$= 27, 100, 25$
Arranging in descending order, the numbers are $ 100, 27, 25$
$\Rightarrow \sqrt[6]{10},\sqrt[4]{3},\sqrt[12]{25}$

The greatest amongst the the values $0.7 + \sqrt { 0.16 } ,  1.02 - \displaystyle\frac { 0.6 }{ 24 } ,   1.2 \times 0.83$ and $\sqrt { 1.44 } $ is

  1. $0.7+\sqrt { 0.16 } $

  2. $1.02-\displaystyle\frac { 0.6 }{ 24 } $

  3. $1.2\times 0.83$

  4. $\sqrt { 1.44 } $


Correct Option: D
Explanation:

$0.7+ \sqrt { 0.16 } = 0.7 +0.4 = 1.1$ 

$1.02-\displaystyle  \frac { 0.6 }{ 24 } = 1.02 - 0.025 = 1.175$
$1.2 \times 0.83 = 0.996 $
$\sqrt { 1.44 } = 1.2$

$\therefore $ the greatest is $\sqrt { 1.44 } $.