Tag: maths

Questions Related to maths

$(5,-2)$ is the middle line segment joining the parts $\left(\dfrac {x}{2},\dfrac {y+1}{2}\right)$ and $(x+1,y-3)$ then find the value of $x$ & $y$.

  1. True

  2. False


Correct Option: A

Find the area of the triangle formed by joining the mid points of the sides of the triangle whose vertices are $(0.-1), (2, 1) and (0, 3)$

  1. $4$

  2. $8$

  3. $1$

  4. $2$


Correct Option: B
Explanation:

$\\Area\>of\>triangle\>=4\times\>of\>triangle\>formed\>using\>mid-point\>\\=4\times(\frac{1}{2})[x-1(y _2-y _3)+x _2(y _3+y _1)+x _3(y _1-y _2)]\\=2[0+2(3-1)+0]=8sq\>unit$

What is the y intercept of the line that is parallel to $y=3x,$ and which bisects the area of rectangle with corners at $(0,0), (4,0) ,(4,2) $ and $(0,2)$? 

  1. $ -7$

  2. $-6$

  3. $ -5$

  4. $ -4$


Correct Option: C
Explanation:

Rectangle's midpoints are $ = \left( {\frac{{0 + 4}}{2},\frac{{0 + 2}}{2}} \right) = \left( {\frac{4}{2},\frac{2}{2}} \right) = \left( {2,1} \right)$

Slope line y$=$ 3x will be :
${m _1} = 3$
Parallel line will be
${m _2} = 3$
Equation of line passing through (2 , 1)
$y - {y _1} = m(x - {x _1})$
$(y - 1) = 3(x - 2)$
$y - 1 = 3x - 6$
$y = 3x - 5$
Hence on comparing 
Y- intercept $=$ - 5

The mid-point of the line $(a, 2)$ and $(3, 6)$ is $(2, b)$. Find the numerical values of $a$ and $b$.

  1. $a=1$, $b=6$

  2. $a=2$, $b=4$

  3. $a=1$, $b=4$

  4. $a=2$, $b=6$


Correct Option: C
Explanation:

Mid-point of $(a,2)$ and $(3,6)$ is $(2,b)$

=>$(2,b)=\left( \cfrac { a+3 }{ 2 } ,\cfrac { 2+6 }{ 2 }  \right) \ =>a=4-3,b=4\ =>a=1,b=4$

If $(3, -4)$ and $(-6, 5)$ are the extremities of a diagonal of a parallelogram and $(2, 1)$ is its third vertex, then its fourth vertex is?

  1. $(-1, 0)$

  2. $(-1, 1)$

  3. $(0, -1)$

  4. $(-5, 0)$


Correct Option: D

If $(6, -3)$ is the one extremity of diameter to the circle $x^{2}+y^{2}-3x+8y-4=0$ then its other extremity is-

  1. $(3/2, -4)$

  2. $(-3, -5)$

  3. $(3, -5)$

  4. $(3, 5)$


Correct Option: B

The length of the median from the vertex A of a triangle whose vertices are $A (-1, 3),$ B $(1, -1)$ and C$(5,1)$ is 

  1. $5$

  2. $4$

  3. $1$

  4. $3$


Correct Option: A
Explanation:
Length of the median from the vertex $A$ of a triangle $\triangle{ABC}$
Let $AD$ be the median.

$\Rightarrow\,D$ is the midpoint of $BC$

Using midpoint formula,$D=\left(\dfrac{1+5}{2},\,\dfrac{-1+1}{2}\right)=\left(3,\,0\right)$

Length of median $=AD=\sqrt{{\left(-1-3\right)}^2{}+{\left(0-3\right)}^{2}}=\sqrt{16+9}=\sqrt{25}=5$units.

The locus of mid points of chords to the circle $x^{2}+y^{2}-8x+6y+20=0$ which are parallel to the line $3x+4y+5=0$ 

  1. $3x+4y-25=0$

  2. $4x+3y+5=0$

  3. $4x-3y-25=0$

  4. $4x-3y+25=0$


Correct Option: A

If $(2, 3), (-4, 5), (1, -2)$ are the midpoints of the sides $\vec{BC}, \vec{CA}, \vec{AB}$ of $\triangle ABC$, then the equation of $\vec{AB}$ is 

  1. $3x-y-5=0$

  2. $x+3y+5=0$

  3. $x+3y-11=0$

  4. $3x-y+17=0$


Correct Option: A

The point on $X-axis$ equidistant from $(2,3)$and $(1,5)$ is

  1. $\left( \dfrac { -13 }{ 2 } ,0 \right) $

  2. $\left( \dfrac { 13 }{ 2 } ,0 \right) $

  3. $(13,0)$

  4. $none\ of\ these$


Correct Option: A