Tag: maths

Questions Related to maths

The co-ordinates of the mid point of segment $KR$, where $K(2.5, -4.3)$ and $R(-1.5, 2.7)$, are

  1. $(0.5, 0.8)$

  2. $(-0.5, -0.8)$

  3. $(-0.5, 0.8)$

  4. $(0.5, -0.8)$


Correct Option: D
Explanation:

Given that $KR$ is a line segment joining the points $K=(2.5, -4.3)$ and $R=(-1.5, 2.7)$ 

We know that the co-ordinate of the midpoint $M$ of a line joining the points $(x _1, y _1)$ and $(x _2,y _2)$ is given by 

$M=\left( \dfrac { { x } _{ 1 }+{ x } _{ 2 } }{ 2 }, \dfrac { { y } _{ 1 }+{ y } _{ 2 } }{ 2 }  \right)$
Let $M _{KR}$ be the midpoint of the line segment $KR$

 ${ \therefore \quad M } _{ KR }=\left( \dfrac {2.5-1.5}{2}, \dfrac{-4.3+2.7}{2}  \right) =(0.5,-0.8)$

Hence, option D is correct.

Two points $(a, 3)$ and $(5, b)$ are the opposite vertices of a rectangle. If the coordinates $(x, y)$ of the other two vertices satisfy the relation $y = 2x + c$ where $c^{2}+ 2a -b =0$ then the value $c$ can be

  1. $2\sqrt{2}+1$

  2. $2\sqrt{2}-1$

  3. $1-2\sqrt{2}$

  4. $-1-2\sqrt{2}$


Correct Option: A,C
Explanation:

Mid-point of the other vertices is also the mid-point of the given vertices and hence satisfies the given relation
So, $\cfrac { b+3 }{ 2 } =2\left( \cfrac { a+5 }{ 2 }  \right) +c$
$\Rightarrow 2a+2c-b+7=0$
Also, ${ c }^{ 2 }+2a-b=0$
$\Rightarrow { c }^{ 2 }-2c-7=0\Rightarrow c=1\pm 2\sqrt { 2 } $

The coordinates of the centre of a circle are $(-6,1.5)$. If the ends of a diameter are $(-3,y)$ and $(x, -2)$ then:

  1. $x= 9, y=5$

  2. $x=5, y= -9$

  3. $x=-9, y=5$

  4. $x=-9, y=-5$


Correct Option: C
Explanation:

The centre of the circle lies at the mid point of the diameter.
Mid-point of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{
2 }) $ is  calculated by the formula $ \left( \dfrac { { x } _{ 1 }+{ x
} _{ 2 } }{ 2 } ,\dfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $
Using this formula, mid point of 
$ (3,y) $ and $ (x,2) = \left( \dfrac { -3 + x }{ 2 } ,\dfrac { y - 2 }{ 2 } \right) $
So,$\left( \dfrac { -3 + x }{ 2 } ,\dfrac { y - 2 }{ 2 }  \right) = (-6, 1.5) $
$ \Rightarrow  - 3 + x = -6 \times 2 $ and $ y - 2 = 1.5 \times 2 $
$\Rightarrow x = - 9 ; y = 5 $

Mid-point of the line-segment joining the points $(-5,4)$ and $(9, -8)$ is:

  1. $(-7,6)$

  2. $(2, -2)$

  3. $(7,-6)$

  4. $(-2, -2)$


Correct Option: B
Explanation:

Midpoint of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{
2 }) $ is calculated by the formula $ \left( \cfrac { { x } _{ 1 }+{ x} _{ 2 } }{ 2 } ,\cfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $
Using this formula, mid - point of the line-segment joining the points $(5,4)$ and $(9,8)$ is: $= \left( \cfrac { -5 + 9 }{ 2 } ,\cfrac { 4- 8 }{ 2 }  \right)  = (2,-2) $

Three consecutive vertices of a parallelogram are $(1, -2)$, $(3,6)$ and $(5,10)$. The coordinates of the fourth vertex are:

  1. $(-3,2)$

  2. $(2, -3)$

  3. $(3,2)$

  4. $(-2, -3)$


Correct Option: C
Explanation:

Let the fourth vertex D $ = (x,y) $
We know that the diagonals of a parallelogram bisect each other. So,the

midpoint of AC is same as the mid point of BD.

Mid point of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y

} _{ 2 }) $ is  calculated by the formula $ \left( \frac { { x } _{ 1 }+{

x } _{ 2 } }{ 2 } ,\frac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $

So, midpoint of $ AC = $ Mid point of $ BD $

$ => \left( \frac { 1+5 }{ 2 } ,\frac { -2+10 }{ 2 }  \right) \quad =

\left( \frac { 3+x }{ 2 } ,\frac { 6 +y }{ 2 }  \right) \quad $

$ => \left( \frac { 6 }{ 2 } ,\frac { 8 }{ 2 }   \right) \quad =

\left( \frac { 3+x }{ 2 } ,\frac { 6 +y }{ 2 }  \right) \quad $

$ => 3+x=6 ; 6 + y = 8 $

$ => x = 3 ; y = 2 $

Hence, $ D = (3,2) $

Find the coordinates of the centre of a circle, if the coordinates of the end points of a diameter being $(-3,8)$ and $(5,6)$.

  1. $(-1,7)$

  2. $(2,7)$

  3. $(-2,7)$

  4. $(1,7)$


Correct Option: D
Explanation:

The centre of the circle lies at the mid point of the diameter.

Mid point of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{

2 }) $ is  calculated by the formula $ \left( \dfrac { { x } _{ 1 }+{ x

} _{ 2 } }{ 2 } ,\dfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $
Using this formula, mid point of the diameter $= \left( \dfrac { -3 + 5}{ 2 } ,\dfrac { 8 + 6 }{ 2 }  \right) = (1,7) $

The mid-point of a line segment is $(5,8)$. If one end point is $(3,5)$, find the second end point

  1. $(-7,11)$

  2. $(7,-11)$

  3. $(7,11)$

  4. $(-7,-11)$


Correct Option: A,C
Explanation:

Mid point of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{

2 }) $ is calculated by the formula $ \left( \dfrac { { x } _{ 1 }+{ x

} _{ 2 } }{ 2 } ,\dfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $

Let the other point be $ (x,y) $
So,
$=\left( \dfrac {3 + x }{ 2 } ,\dfrac { 5 + y }{ 2 }  \right) \quad =\quad (5,8)

$
$ => \frac {3 + x }{ 2 } = 5 $ and  $ \dfrac { 5 + y } {2} = 8 $
$ => x = 7 , y = 11 $
So, the second end point is $ (7,11) $

The vertices of a parallelogram are $(3, -2)$, $(4,0)$, $(6, -3)$ and $(5, -5)$. The diagonals intersect at the point M. The coordinates of the point M are:

  1. $\begin{pmatrix} \frac { 9 }{ 2 },-\frac { 5 }{ 2 } \end{pmatrix}$

  2. $\begin{pmatrix} \frac { 7 }{ 2 },-\frac { 5 }{ 2 }\end{pmatrix}$

  3. $\begin{pmatrix} \frac { 7 }{ 2 },-\frac { 3 }{ 2 }\end{pmatrix}$

  4. None of these


Correct Option: A
Explanation:

The diagonals of a parallelogram bisect each other. Hence M is the mid point of the vertices $ (3,-2) ; (6,-3) $ or of the vertices  $ (4,0) ; (5,-5) $

Mid point of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{

2 }) $ is  calculated by the formula $ \left( \frac { { x } _{ 1 }+{x} _{ 2 } }{ 2 } ,\frac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $

Using this formula, mid point of $ (3, -2) , (6, -3) = \left( \frac { 3\quad +6 }{ 2 } ,\frac { -2-3 }{ 2 }  \right) =\left( \frac { 9 }{ 2 } ,\frac { -5 }{ 2 }  \right) $

Find the mid-point of AB where A and B are the points $(-5, 11)$ and $(7,3)$, respectively.

  1. $(1,7)$

  2. $(0,0)$

  3. $(1,0)$

  4. $(0,7)$


Correct Option: A
Explanation:

Midpoint of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{

2 }) $ is  calculated by the formula $ \left( \dfrac { { x } _{ 1 }+{ x

} _{ 2 } }{ 2 } ,\dfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $

Using this formula, mid point of AB $= \left( \dfrac { -5 + 7 }{ 2 } ,\dfrac { 11 + 3 }{ 2 } 

\right) = (1, 7) $

Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points $(-2, -1)$, $(1,0)$, $(4,3)$ and $(1,2)$ meet.

  1. $(5,1)$

  2. $(1,1)$

  3. $(1,5)$

  4. $(1,1-)$


Correct Option: B
Explanation:

Let the vertices of the parallelogram be $A (-2,-1), B(1,0),  C(4,3),  D(1,2) $

The diagonals AC and BD would meet at the midpoint of AC and BD.

Midpoint of two points $ { (x } _{ 1 },{ y } _{ 1 }) $ and $ { (x } _{ 2 },{ y } _{2 }) $ is  calculated by the formula $ \left( \cfrac { { x } _{ 1 }+{ x} _{ 2 } }{ 2 } ,\cfrac { { y } _{ 1 }+y _{ 2 } }{ 2 }  \right) $

Hence, 
mid point of AC $= \left( \cfrac { -2+4 }{ 2 } ,\cfrac { -1+3}{ 2 }  \right) = (1,1) $