Tag: maths

Questions Related to maths

Product of XII and L in numerical form is?

  1. 600

  2. 310

  3. 620

  4. 2447


Correct Option: A
Explanation:

$XII=12$

$L=50$
$\therefore $ Product $=12\times 50=600$

 Roman number of $2050$ is?

  1. CX

  2. LXI

  3. MML

  4. XXII


Correct Option: C
Explanation:

Conversion to Roman 

 Iteration  Decimalnumber  Highest decimalvalue  Highest romannumeral  Temporary result
 $1$  $2050$  $1000$  $M$   $M$
 $2$  $1050$   $1000$   $M$   $MM$
 $3$  $50$   $50$   $L$   $MML$

So $2050$ in Roman is $MML$

Perform the given operation and write the answer in numerical form
$XCVI+XIII$

  1. $35$

  2. $109$

  3. $24$

  4. $110$


Correct Option: B
Explanation:

$XC=90$ 

$V1=6$
$XCVI=96$
$XIII=13$
$XCVI+XIII=69+13=109$
So, option B is correct.

Roman number representation of  $1350$ is?

  1. CCXLV

  2. MCCCL

  3. ML

  4. CXII


Correct Option: B
Explanation:

Conversion to roman

 Iteration  Decimal number  Highest decimalvalue  Highest romannumeral  Temporary  result
 $1$  $1350$  $1000$  $M$  $M$
  $2$  $350$  $100$  $C$  $MC$
  $3$  $250$  $100$  $C$  $MCC$
  $4$  $150$  $100$  $C$  $MCCC$
  $5$  $50$  $50$  $L$  $MCCCL$

So $1350$ in roman is $MCCCL$

Roman number representation of 792 is

  1. DCCCLXXI

  2. DCCXCII

  3. DCCXCI

  4. DCCLXXXI


Correct Option: B
Explanation:
 Iteration  Decimalnumber  Highest decimal  Highestroman  Temporary result
 $1$  $792$  $500$  $D$  $D$
 $2$  $292$  $100$  $C$  $DC$
 $3$  $192$  $100$  $C$  $DCC$
 $4$  $92$  $90$  $XC$  $DCCXC$
 $5$  $2$  $2$  $II$  $DCCXCII$

$792=$$DCCXCII$

Select the correct match of Roman numerals in Column I with Hindu-Arabic numerals in Column II

  1. $CCXVIII$ - $318$

  2. $ DCCLXIX$ - $769$

  3. $MMMCCXCIX$ - $3399$

  4. $DCCXLVII$ - $5748$


Correct Option: B
Explanation:

1) $CCXVIII = 218$

2) $DCCLXIX = 769$
3) $MMMCCXCIX = 3299$
4) $DCCXLVII = 747$
Hence the correct answer is option B

Roman numeral for $498$ is _________ .

  1. $CDCXVIII$

  2. $CDCXIV$

  3. $CDXCVIII$

  4. None of these


Correct Option: C
Explanation:

Roman numeral for $498$=$400+90+8$= $CD+XC+VIII$.
$\therefore$ Roman numeral for $498=CDXCVIII$.

Numeral for sixty million and sixty six is:

  1. $60000060$

  2. $60000066$

  3. $6000066$

  4. None of the above


Correct Option: B
Explanation:

The numeral value for sixty million and sixty six is

$60000066$.
Hence, the answer is $60000066$.

If $O(0,4)$ and $P(0,-4)$, are the co-ordinates of the line segment $OP$ then co-ordinate of its midpoint are

  1. $(0,-4)$

  2. $(0,4)$

  3. $(-4,0)$

  4. $(0,0)$


Correct Option: D
Explanation:

Midpoint of a line segment having coordiantes $\left({x} _{1},{y} _{1}\right)$ and $\left({x} _{2},{y} _{2}\right)$ is $\left(\dfrac{{x} _{1}+{x} _{2}}{2},\dfrac{{y} _{1}+{y} _{2}}{2}\right)$

$\therefore $ Modpoint of $OP=\left(\dfrac{0+0}{2},\dfrac{4+-4}{2}\right)$
$=\left(0,0\right)$

Find the mid point of $(9,5)$ and $(3,7)$

  1. $(6,6)$

  2. $(12,12)$

  3. $(2,2)$

  4. $(1,1)$


Correct Option: A
Explanation:

Given points $(9,5),(3,7)$

Mid point is given as $\left(\dfrac{x _1+x _2}2,\dfrac{y _1,y _2}{2}\right)\\left(\dfrac{9+3}{2},\dfrac{5+7}{2}\right)\\left(\dfrac{12}{2},\dfrac{12}{2}\right)=(6,6)$