Tag: maths

Questions Related to maths

Find G.C.D of $20x^2-9x+1$ and $5x^2-6x+1$

  1. (x-1)

  2. (5x-1)

  3. (5x+1)

  4. None of these


Correct Option: B
Explanation:

Let, $p(x) = 20x^2-9x+1$ and $q(x) = 5x^2-6x+1$
$p(x) = 20x^2-9x+1$
         $=20x^2-5x-4x+1$
         $=5x(4x-1)-1(4x-1)$
         $=(5x-1)(4x-1)$
and
$q(x) = 5x^2-6x+1$
         $=5x^2-5x-x+1$
         $=5x(x-1)-1(x-1)$
         $=(5x-1)(x-1)$
$\therefore$ G.C.D of $p(x)$  and  $q(x)=(5x-1)$.
Option B is correct.

The G.C.D of $x^3+x^2-x-1$ and $x^2-1$ is

  1. $x^2-1$

  2. $x+1$

  3. $x^3-1$

  4. $x-1$


Correct Option: A
Explanation:

Let $p(x) = x^3+x^2-x-1$ and $ q(x) = x^2-1$
$p(x) = x^3+x^2-x-1$
         $ = x^2(x+1)-1(x+1) $
         $ = (x^2-1) (x+1) $
         $ = (x-1)(x+1)(x+1) $
and
$ q(x) = x^2-1$
         $= (x+1)(x-1) $
$\therefore $ G.C.D of $p(x)$ and $q(x)$ =$ (x+1)(x-1) = x^2 - 1 $
Option A is correct.

Find G.C.D of: $(x^2-9)(x-3)$ and $x^2+6x+9$

  1. $(x+3)^2$

  2. (x-3)

  3. (x+3)

  4. None of these


Correct Option: C
Explanation:

$p(x) = (x^2-9)(x-3)$
        $= (x^2-3^2)(x-3)$
        $= (x-3)(x+3)(x-3)$
and
$q(x) = x^2+6x+9$
        $ = x^2+3x+3x+9$
        $ = x(x+3)+3(x+3)$
        $= (x+3)(x+3) $
$\therefore $ G.C.D of $p(x)$ and $q(x) = x+3 $
Option C is correct.

Find G.C.D of: $8(x^4-16)$ and $12(x^3-8)$

  1. $4(x-2)$

  2. $3(x^3-8)$

  3. $2(x^2-4)$

  4. None of these


Correct Option: A
Explanation:

$p(x) =8(x^4-16)$
   $= 4\times 2 [(x^2)^2 - 4^2] $
   $ = 4\times 2 (x^2 - 4) (x^2 + 4) $
   $ = 4\times 2  (x+2)(x-2) (x^2 +4) $
and
 $q(x) = 12(x^3-8)$
       $=4\times 3 (x^3 - 2^3) $
         $=4\times 3 (x - 2)(x^2 + 2x + 4) $
$\therefore $ G.C.D of $p(x)$ and $q(x) = 4(x-2) $
Option A is correct.

The HCF of $3^5$, $3^9$, and $3^{14}$ is

  1. $3^5$

  2. $3^9$

  3. $3^{14}$

  4. $3^{28}$


Correct Option: A
Explanation:

${ 3 }^{ 5 }$ = 3x3x3x3x3

${ 3 }^{ 9 }$ = 3x3x3x3x3x3x3x3x3
${ 3 }^{ 14 }$ = 3x3x3x3x3x3x3x3x3x3x3x3x3x3x3
Common factors are 3x3x3x3x3
SO HCF will be ${ 3 }^{ 5 }$
Correct answer will be option A

The GCD and LCM of two numbers a and b are, respectively, 27 and 2079. If a is divided by 9, the quotient is 21. Then b is

  1. $243$

  2. $189$

  3. $113$

  4. $297$


Correct Option: D
Explanation:

Let the two numbers be $a$ and $b$.
$a=quotient\times dividend$
$a=21\times 9$
  $=189$
$\therefore b=\frac { GCD\times LCM }{ a }$
                  $=\frac { 27\times 2079 }{ 189 }$
                  $=297$

The greatest number that will divide 37, 50, 123 leaving remainder 1, 2 and 3 respectively is

  1. 9

  2. 10

  3. 15

  4. 12


Correct Option: D
Explanation:

$37-1=36, 50-2=48$
$123-3=120$
HCF of 36, 48 and $120=12$
$\therefore$ required number $=12$.

What is the H.C.F. of 1134, 1344 and 1512?

  1. $42$

  2. $64$

  3. $1344$

  4. $1512$


Correct Option: A
Explanation:

$1134 = 2\times3^{4}\times7$


$1344 = 2^{6}\times3\times7$


$1512 = 2^{3}\times3^{3}\times7$


$\therefore$ H.C.F $= 2\times 3\times 7 = 42$

HCF of $10$ and $100$ is

  1. $10$

  2. $100$

  3. $5$

  4. All of the above


Correct Option: A
Explanation:

$10=5\times 2$
$100=5\times 2\times 5\times 2=5^2\times 2^2$
$HCF = 5\times 2=10$

So, option $A$ is correct.

What is the greatest common factor of $45,135$ and $270$?

  1. $5$

  2. $9$

  3. $15$

  4. $25$

  5. $45$


Correct Option: E
Explanation:

The factors of the given numbers are :
$45  = 1,3,5,9,15$ and $45$
$135 = 1,3,5,9,15,45$ and $135$
$270 = 1,3,5,9,15,45,90,135$ and $270$
The common factors in each of the above numbers are $3,3$ and $5$.
Hence, the GCF is $3\times 3\times 5$ = 45
and as $45$ is also a factor of both $135$ and $270$.
The GCF of $45, 135$ and $270$ is $45$.
The correct answer is Option E, the number $45$.

Ans: E