Tag: maths

Questions Related to maths

The sum of $2n$ terms of a series of which every even term is $'a'$ times the terms before it, and every odd term $'c'$ times the terms before it, the first term being unity, is

  1. $\dfrac { \left( 1-a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac-1 }$

  2. $\dfrac { \left( 1+a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac+1 }$

  3. $\dfrac { \left( 1+a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac-1 }$

  4. $None\ of\ these$


Correct Option: C
Explanation:

$\begin{array}{l} { T _{ 1 } }=1 \ { T _{ 2 } }=a \ { T _{ 3 } }=Ca \ { T _{ 4 } }=C{ a^{ 2 } } \ { T _{ 2n } }=a\frac { { 2n } }{ 2 } \cdot C\frac { { 2n } }{ 2 } -1={ a^{ n } }{ C^{ n-1 } } \ { 5 _{ 2n } }=1+a+ca.....{ a^{ n } }{ C^{ n-1 } } \ =1+\left[ { a+c{ a^{ 2 } }+{ c^{ 2 } }{ a^{ 3 } }...{ a^{ n } }{ c^{ n-1 } } } \right]  \ +\left[ { ca+{ c^{ 2 } }{ a^{ 2 } }+{ c^{ 3 } }{ a^{ 3 } }.....{ c^{ n-1 } }{ a^{ n-1 } } } \right]  \ =1+\frac { { a\left( { { a^{ n } }{ c^{ n-1 } } } \right)  } }{ { ac-1 } } +\frac { { ac\left( { { a^{ n-1 } }{ c^{ n-1 } }-1 } \right)  } }{ { ac-1 } }  \ =\frac { { \left( { { a^{ n } }{ c^{ n } }-1 } \right) \left( { a+1 } \right)  } }{ { ac-1 } }  \end{array}$

The sum of $10$ terms of the series $0.7 + .77 + .777 + \ldots \ldots \ldots$ is

  1. $\dfrac { 7 } { 9 } \left( 89 + \dfrac { 1 } { 10 ^ { 10 } } \right)$

  2. $\dfrac { 7 } { 81 } \left( 89 + \dfrac { 1 } { 10 ^ { 10 } } \right)$

  3. $\dfrac { 7 } { 81 } \left( 89 + \dfrac { 1 } { 10 ^ { 9 } } \right)$

  4. $\dfrac { 7 } { 9 } \left( 89 + \dfrac { 1 } { 10 ^ { 9 } } \right)$


Correct Option: B
Explanation:
$0.7+0.77+0.777+......$
$=7\left( 0.1+0.11+0.111+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 0.9+0.99+0.999+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 1-0.1+1-0.1+1-0.001+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 10-\left( 0.1+0.01+0.001+...... \right)  \right) $
$=\dfrac { 7 }{ 9 } \left( 10-\dfrac { 0.1\left( 1-{ 10 }^{ -10 } \right)  }{ 1-0.1 }  \right) =\frac { 7 }{ 9 } \left( 10-\dfrac { 0.1\left( { 10 }^{ 10 }-1 \right)  }{ 0.9\times { 10 }^{ 10 } }  \right) =\dfrac { 7 }{ 9 } \left( 10-\dfrac { 1 }{ 9 } +\dfrac { 1 }{ 9\times { 10 }^{ 10 } }  \right) $
$=\dfrac { 7 }{ 9 } \left( \dfrac { 89 }{ 9 } +\dfrac { 1 }{ 9\times { 10 }^{ 10 } }  \right) $
$=\dfrac { 7 }{ 81 } \left( 89+\dfrac { 1 }{ { 10 }^{ 10 } }  \right) $      [B]

The sum of series $\displaystyle \frac{3}{4} + \frac{15}{16} + \frac{63}{64}+ ..... $ up to $n$ terms is

  1. $\displaystyle n - \frac{4^n}{3} - \frac{1}{3}$

  2. $\displaystyle n + \frac{4^{-n}}{3} - \frac{1}{3}$

  3. $\displaystyle n + \frac{4^n}{3} - \frac{1}{3}$

  4. $\displaystyle n - \frac{4^{-n}}{3} - \frac{1}{3}$


Correct Option: B
Explanation:

For $n=1$, we have
$\displaystyle n - \dfrac{4^n }{3} - \dfrac{1}{3} = 1  - \dfrac{4}{3} - \dfrac{1}{3} = - \dfrac{2}{3}$
$\displaystyle n + \dfrac{4^n}{3} - \dfrac{1}{3} = 1 + \dfrac{4}{3} - \dfrac{1}{3} = 2$
$n - \displaystyle \dfrac{4^{-n}}{3} + \dfrac{1}{3} = 1 - \dfrac{4^{-1}}{3} + \dfrac{1}{3}= \dfrac{5}{4}$
Also, for $n = 2$, we have
$ \displaystyle n + \dfrac{4^{-n}}{3} - \dfrac{1}{3} = 2 + \dfrac{1}{48} - \dfrac{1}{3} = \dfrac{27}{16}$ and $\displaystyle \dfrac{3}{4} + \dfrac{15}{16} = \dfrac{27}{16}$
Hence, option (b) is correct.
ALTER We have,
$\displaystyle \dfrac{3}{4} + \dfrac{15}{16} + \dfrac{63}{64}+ ..... $ to n terms
$= \displaystyle \dfrac{2^2 - 1}{2^2} + \dfrac{2^4 - 1}{2^4} + \dfrac{2^6 - 1}{2^6}+ .... $ to n terms.
$= \displaystyle \left ( 1 - \dfrac{1}{2^2} \right ) + \left ( 1 - \dfrac{1}{2^4} \right ) + \left( 1 - \dfrac{1}{2^6} \right ) + ..... $ to n terms
$= n - \left \{ \dfrac{1}{2^2} + \dfrac{1}{2^4} + \dfrac{1}{2^6} + .... \text{to n terms} \right \}$
$= n \displaystyle - \dfrac{1}{2^2} \left \{ \dfrac{1 - \left (\dfrac{1}{2^2} \right )^n }{1 - \dfrac{1}{2^2}} \right \}$
$= \displaystyle n - \dfrac{1}{3} (1 - 4^{-n})$
$= n + \displaystyle \dfrac{4^{-n}}{3} - \dfrac{1}{3}$

If the sum of $n$ terms of a GP (with common ratio $r$) beginning with the $\displaystyle p^{th}$ term is $k$ times the sum of an equal number of the same series beginning with the $\displaystyle q^{th}$ term, then the value of $k$ is

  1. $\displaystyle r^{p/q}$

  2. $\displaystyle r^{q/p}$

  3. $\displaystyle r^{p-q}$

  4. $\displaystyle r^{p+q}$


Correct Option: C
Explanation:

$p^{th}$ term of the series  $=ar^{p-1}$     ($a$ is first term)

$q^{th }$ term of th series $= ar^{q-1}$
Sum of $n$ term beginning with $p^{th} $ term 
$=\dfrac{ar^{p-1}(r^n - 1)}{r-1}$
Sum of $n$ term beginning with $q^{th} $ term 
$=\dfrac{ar^{q-1}(r^n - 1)}{r-1}$
Sum of $n$ term beginning with $p^{th} $ term $= k$ (sum of $n$ term beginning with $q^{th} $ term )
Thus $\dfrac{ar^{p-1}(r^n - 1)}{r-1}$$=k\dfrac{ar^{q-1}(r^n - 1)}{r-1}$
$\Rightarrow k = \dfrac{r^{p-1}}{r^{q-1}}$
$\Rightarrow k= r^{p-q}$

The sum of $1 + \dfrac {2}{5} + \dfrac {3}{5^{2}} + \dfrac {4}{5^{3}} + ....$ up to $n$ terms is

  1. $\dfrac {25}{16} - \dfrac {4n + 5}{16\times 5^{n - 1}}$

  2. $\dfrac {3}{4} - \dfrac {2n + 5}{16\times 5^{n + 1}}$

  3. $\dfrac {3}{7} - \dfrac {3n + 5}{16\times 5^{n - 1}}$

  4. $\dfrac {1}{2} - \dfrac {5n + 1}{3\times 5^{n + 2}}$


Correct Option: A
Explanation:
Let $S=1+\cfrac { 2 }{ 5 } +\cfrac { 3 }{ { 5 }^{ 2 } } +\cfrac { 4 }{ { 5 }^{ 3 } } +...\quad \quad (1)$
Multiplying $S$ with $\cfrac{1}{5}$ we get
$\cfrac { 1 }{ 5 } S=\cfrac { 1 }{ 5 } +\cfrac { 2 }{ { 5 }^{ 2 } } +\cfrac { 3 }{ { 5 }^{ 3 } } +\cfrac { 4 }{ { 5 }^{ 4 } } +...\quad \quad (2)$
Subtracting $(2)$ from $(1)$
$\quad \quad \quad S\;\;=1+\cfrac { 2 }{ 5 } +\cfrac { 3 }{ { 5 }^{ 2 } } +\cfrac { 4 }{ { 5 }^{ 3 } } +....{ T } _{ n }\\ \underline { \quad \quad -\cfrac { 1 }{ 5 } S=-\left[ \cfrac { 1 }{ 5 } +\cfrac { 2 }{ { 5 }^{ 2 } } +\cfrac { 3 }{ { 5 }^{ 3 } } +...{ T } _{ n-1 } \right] -{ T } _{ n } } \\ \left( 1-\cfrac { 1 }{ 5 }  \right) S=1+\cfrac { 1 }{ 5 } +\cfrac { 1 }{ { 5 }^{ 2 } } +\cfrac { 1 }{ { 5 }^{ 3 } } +.....-{ T } _{ n-1 }\\ \left( 1-\cfrac { 1 }{ 5 }  \right) S=\cfrac { (1)\left( 1-\cfrac { 1 }{ { 5 }^{ n } }  \right)  }{ \left( 1-\cfrac { 1 }{ 5 }  \right)  } -\cfrac { n }{ { 5 }^{ n-1 } } \\ \cfrac { 4 }{ 5 } S=\cfrac { 5 }{ 4 } -\cfrac { (4n+5) }{ 4\times { 5 }^{ n } } \\ S=\cfrac { 25 }{ 16 } -\cfrac { (4n+5) }{ 16\times { 5 }^{ n-1 } } $

In a $G.P$. the ratio of the sum of the first eleven terms to the sum of last eleven terms is $\displaystyle \frac{1}{8}$ and the ratio of the sum of all terms without the first nine to the sum of all the terms without the last nine is $2$. Then the number of terms of the $G.P$ is

  1. $15$

  2. $43$

  3. $38$

  4. $56$


Correct Option: C
Explanation:

We have: 
$\dfrac { \frac { a({ r }^{ 11 }-1) }{ r-1 }  }{ \frac { a{ r }^{ n-11 }({ r }^{ 11 }-1) }{ r-1 }  } =\dfrac { 1 }{ 8 }$
$\Rightarrow { r }^{ n-11 }=8$ ...(i)
Also:
$\dfrac { \frac { a{ r }^{ 9 }({ r }^{ 11 }-1) }{ (r-1) }  }{ \frac { a({ r }^{ n-9 }-1) }{ (r-1) }  } =2$
$\Rightarrow { r }^{ 9 }=2 $
$\Rightarrow r={ 2 }^{ \frac { 1 }{ 9 }  }$ ...(ii)
Substituting (ii) in (i):
${ 2 }^{ \frac { n-11 }{ 9 }  }={ 2 }^{ 3 }$
$\Rightarrow \dfrac { n-11 }{ 9 } =3$
$\Rightarrow n=38$
Hence, (c) is correct.

In a single throw of die, what is the probability of getting a number greater than 3 ?

  1. $\dfrac12$

  2. $\dfrac23$

  3. $\dfrac13$

  4. none of these


Correct Option: A

An urn contains 2 red, 3 green and 2 blue balls. If 2 balls are drawn at random, find the probability that no ball is blue.

  1. $\dfrac57$

  2. $\dfrac{10}{21}$

  3. $\dfrac27$

  4. $\dfrac{11}{21}$


Correct Option: B

If the chance that a vessel arrives safely at a port is $\dfrac 9{10}$ then what is the chance that out of $5$ vessels expected at least $4$ will arrive safely?

  1. $\dfrac {14 \times 9^4}{10^5}$

  2. $\dfrac {15 \times 9^5}{10^4}$

  3. $\dfrac {14 \times 9^3}{10^4}$

  4. $\dfrac {14 \times 9^6}{10^5}$


Correct Option: A

A box contains nine bulbs out of which $4$ are defective. If four bulbs are chosen at random, find the probability that all the four bulbs are defective.

  1. $\dfrac{62}{63}$

  2. $\dfrac{125}{126}$

  3. $\dfrac{1}{63}$

  4. $\dfrac{1}{126}$


Correct Option: D