Tag: maths

Questions Related to maths

$1+3+7+15+31+.....$ to n terms 

  1. ${2^{n + 1}} - n$

  2. ${2^{n + 1}} - n - 2$

  3. ${2^n} - n - 2$

  4. None of these


Correct Option: B

If $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a)(1+a^2)(1+a^4)$ then $n$ is given by 

  1. $3$

  2. $5$

  3. $7$

  4. $9$


Correct Option: C
Explanation:

Given, 

$1+a+a^{2}+a^{3}+.........+a^{n}=(1+a)(1+a^2)(1+a^4)$
or, $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a+a^2+a^3)(1+a^4)$
or, $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a+a^2+a^3+a^4+a^5+a^6+a^7)$
Comparing both sides we get, $n=7$.

The sum of first 4 term of GP with $a=2,r=3$ is 

  1. $80$

  2. $26$

  3. $127$

  4. $8$


Correct Option: A
Explanation:

$a=2,r=3$

Sum of first $4$ terms is $\dfrac{a(r^n-1)}{r-1}\\dfrac{2(3^4-1)}2=81-1=80$

Three numbers whose sum is $45$ are in A.P. If $5$ is subtracted from the first number and $25$ is added to third number, the numbers are in G.P. Then numbers can be

  1. $10,\ 15,\ 20$

  2. $8,\ 15,\ 22$

  3. $5,\ 15,\ 25$

  4. $12,\ 15,\ 18$


Correct Option: A
Explanation:

Let the numbers be $a-d,a,a+d$

Their sum is $45\a-d+d+a+d=45\3a=45\a=15$
The changed numbers are $15-d-5,15,15+d+25\10-d,15,40+d$
Condition to be in GP is $b^2=ac\15^2=(10-d)(40+d)\225=400-30d-d^2\d^2+30d-175=0\d^2+35d-5d-175=0\d(d+35)-5(d+35)=0\(d-5)(d+35)=0\d=5,-35$
$a=15,d=5$
So the series is $10,15,20$

If $S$ is the sum to infinity of a $G.P.$ whose first terms is $a$ then the sum of the first $n$ terms is 

  1. $S\left(1-\dfrac{a}{S}\right)^{n}$

  2. $S\left[1-\left(1-\dfrac{a}{S}\right)\right]^{n}$

  3. $a\left[1-\left(1-\dfrac{a}{S}\right)\right]^{n}$

  4. $S\left[1-\left(1-\dfrac{S}{a}\right)\right]^{n}$


Correct Option: A

For first $n$ natural numbers we have the following results with usual notations $ \displaystyle \sum _{r=1}^{n}r =\frac{n(n+1)}{2}, \sum _{r=1}^{n}r^{2} =\frac{n(n+1)(2n+1)}{6},\sum _{r=1}^{n}r^{3}=\left ( \sum _{r=1}^{n}r \right )^{2}$ If $\displaystyle a _{1}a _{2}....a _{n} \in A.P $ then sum to $n$ terms of the sequence $\displaystyle \frac{1}{a _{1}a _{2}},\frac{1}{a _{2}a _{3}},...\frac{1}{a _{n-1}a _{n}}$ is equal to $\displaystyle \frac{n-1}{a _{1}a _{n}}$
 and the sum to $ n$ terms of a $G.P$ with first term '$a$' & common ratio '$r$' is given by  $\displaystyle S _{n}= \frac{lr-a}{r-1}$ for $ r \neq 1 $ for $ r =1 $ sum to $n$ terms of same $G.P.$ is $n$ $a$, where the sum to infinite terms of$G.P.$ is the limiting value of
 $\displaystyle \frac{lr-a}{r-1} $ when $\displaystyle n \rightarrow \infty ,\left |  r \right | < l $ where $l$ is the last term of $G.P.$  On the basis of above data answer the following questionsThe sum of the series $\displaystyle 2+6+18+...+486 $ equals?

  1. 2184

  2. 1358

  3. 1456

  4. 728


Correct Option: D
Explanation:

Let ${ S } _{ n }=2+6+18+...+486$

$\Rightarrow { S } _{ n }=2\left( 1+{ 3+3 }^{ 2 }+...+{ 3 }^{ 5 } \right) $
$\Rightarrow { S } _{ n }=2\left( \dfrac { { 3 }^{ 6 }-1 }{ 3-1 }  \right) =729-1$     ...[ sum of G.P series ]

$\Rightarrow { S } _{ n }=728$

Ans: D

$\displaystyle x(x+y)+x^{2}(x^{2}+y^{2})+x^{3}(x^{3}+y^{3})+$.......to n terms.

  1. $\displaystyle x^{2}\frac{(1-x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$

  2. $\displaystyle x^{2}\frac{(1+x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$

  3. $\displaystyle x^{2}\frac{(1+x^{2n})}{1+x^{2}}+xy\frac{(1+x^{n}y^{n})}{1+xy}$

  4. $\displaystyle x^{2}\frac{(1+x^{2n})}{1+x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$


Correct Option: A
Explanation:

$\displaystyle x(x+y)+x^{2}(x^{2}+y^{2})+x^{3}(x^{3}+y^{3})+$.......to n terms.

$=\displaystyle \left(x^2+x^4+x^6+...n terms\right)+\left(xy+x^2y^2+... n terms\right)$

$=\displaystyle x^{2}\frac{(1-x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$
Hence, option A

Find the value of the sum $\displaystyle \sum _{r=1}^{n}\,$ $\displaystyle \sum _{s=1}^{n}\, \delta _{rs}\, 2^r\, 3^s$ where $ \delta _{rs}$ is zero if $r \neq s$ & $\delta _{rs}$ is one if $r=s$

  1. $ \dfrac {6(6^n-1)}{5}$

  2. $ \dfrac {6(6^n+1)}{5}$

  3. $ \dfrac {5(6^n+1)}{6}$

  4. $ \dfrac {n(6^n-1)}{6}$


Correct Option: A
Explanation:

Given  $\delta _{rs}\, =\, 0   if \quad r\neq s\quad \delta  _{rs}=1\quad if \quad r=s$

$\therefore \displaystyle \sum _{r=1}^{n}\, \sum _{s=1}^{n}\, \delta _{rs}\, 2^r\, 3^s$

$=\displaystyle

\sum _{r=1}^{n} 2^r3^r\, =\, \displaystyle \sum _{r=1}^{n} 6^r\, \,

=6+6^2\, +\, 6^3+..6^n\,=\, \displaystyle \frac {6(6^n-1)}{5}$

The A.M. of the series $1, 2, 4, 8, 16, ......, 2$$^n$ is

  1. $\displaystyle \frac{2^n - 1}{n}$

  2. $\displaystyle \frac{2^{n+1} - 1}{n + 1}$

  3. $\displaystyle \frac{2^n - 1}{n+1}$

  4. $\displaystyle \frac{2^{n+1} - 1}{n}$


Correct Option: B
Explanation:

$\displaystyle A.M.=\frac { 1+2+4+8+...+{ 2 }^{ n } }{ n+1 } =\frac { { 2 }^{ n+1 }-1 }{ \left( n+1 \right) \left( 2-1 \right)  } =\frac { { 2 }^{ n+1 }-1 }{ n+1 } $

Ans: B

$\displaystyle 1+\frac{1}{4\times 3}+\frac{1}{4\times 3^{2}}+\frac{1}{4\times 3^{3}}$  is equal to 

  1. $1.120$

  2. $1.250$

  3. $1.140$

  4. $1.160$


Correct Option: A
Explanation:

Given expression = $\displaystyle 1+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}=\frac{108+9+3+1}{108}=\frac{121}{108}=1.120\left ( approx \right )$