Tag: maths

Questions Related to maths

Evaluate:
$2+2^2+2^3+....+2^9=$

  1. $1396$

  2. $1022$

  3. $1587$

  4. $1478$


Correct Option: B
Explanation:

$2+{ 2 }^{ 2 }+{ 2 }^{ 3 }+......+{ 2 }^{ 9 }$

The series is in $GP$ with common difference$=\cfrac { { 2 }^{ 2 } }{ 2 } =\cfrac { { 2 }^{ 3 } }{ 2 } .....=\cfrac { { 2 }^{ 9 } }{ { 2 }^{ 8 } } =2$
Sum of $GP=\cfrac { a({ r }^{ n }-1) }{ r-1 } $ where $a$ is the first term and $r$ is the common difference and last term$=a({ r }^{ n }-1)$
So,Last term,$2.{ 2 }^{ n-1 }={ 2 }^{ 9 }\ { 2 }^{ n-1 }={ 2 }^{ 8 }\ n-1=8\ n=9$
Sum$==\cfrac { 2({ 2 }^{ 9 }-1) }{ 2-1 } =2(512-1)\ =2(511)=1022$
Answer $(B)$.

Sum of the first five terms of the geometric series $1 + \dfrac {2}{3} + \dfrac {4}{9} + $....is 

  1. $\dfrac {211}{81}$

  2. $\dfrac {81}{211}$

  3. $-\dfrac {211}{81}$

  4. $-\dfrac {81}{211}$


Correct Option: A
Explanation:

$\displaystyle { s } _{ 5 }=\frac { 1\times \left[ { 1-\left( { 2 }/{ 3 } \right)  }^{ 5 } \right]  }{ 1-\left( { 2 }/{ 3 } \right)  } =\frac { 211 }{ 81 } $

Given $A=2^{65}$ and $B=(2^{64}+2^{63}+2^{62}+....+2^0)$

  1. B is $2^{64}$ larger than A

  2. A and B are equal

  3. B is larger than A by $1$

  4. A is larger than B by $1$


Correct Option: D
Explanation:

B is in G.P. with $a=2^0, r=2, n=65$
$\therefore S _n=\frac {a(r^n-1)}{r-1}=\frac {2^0(2^{65}-1)}{2-1}$
$\therefore B=2^{65}-1$
$\Rightarrow B=A-1$
$\therefore$ A is larger than B by $1$.

The sum of the geometric sequence is given as $S=\cfrac{a(1-r^n)}{1-r}$, where $r$ is the

  1. constant

  2. term

  3. common difference

  4. common ratio


Correct Option: D
Explanation:
We know $S=\dfrac {a(1-r^n)}{1-r}$
In a geometric sequence, the ratio of terms is constant and is known as the common ratio $(r)$.
So, in the formula for summation, $r$ is common ratio.

If $a _1,\, a _2,\, a _3,\dots,a _n$ are in geometric progression. Then the given geometric progression is a

  1. finite geometric progression

  2. finite harmonic progression

  3. infinite geometric progression

  4. finite arithmetic progression


Correct Option: A
Explanation:
Given sequence is $a _1,a _2,a _3,....a _n$
Since the last term is given, so the given progression is finite and it is given that progression is geometric progression.
So, the given progression is a finite geometric progression.

$x, 2x, 4x, . . .$
The first term in the sequence above is $x$, and each term thereafter is equal to twice the previous term. Find the sum of the first five terms of this sequence.

  1. $10x$

  2. $15x$

  3. $30x$

  4. $31x$

  5. $32x$


Correct Option: D
Explanation:

The first term in given Geometric series, $a _1=x$
The common ratio $r$ $=\dfrac{4x}{2x}=2$
No. of terms, $n$ $=5$
Applying sum of GP formula,
$S _n=\dfrac{a(1-r^n)}{1-r}$
      $=\dfrac{x(1-2^5)}{1-2}$
      $=\dfrac{x(1-32)}{-1}=31x$
Hence,option D is correct.

Find the sum of the following G.P. to $n$ terms $0.5 + 0.55 + 0.555 + 0.5555 + .....$

  1. $\dfrac {5}{9}\left[9n-1+\dfrac {1}{10^n}\right]$

  2. $\dfrac {5}{81}\left[5n-1-\dfrac {1}{10^n}\right]$

  3. $\dfrac {5}{81}\left[9n-1+\dfrac {1}{10^n}\right]$

  4. $-\dfrac {5}{9}\left[9n-1+\dfrac {1}{10^n}\right]$


Correct Option: C

Let $n > 1$ be the positive integer. The largest positive integer $m$, such that $n^m + 1$ divides $1 + n + n^2 ..... n^{125}$ is

  1. $60$

  2. $62$

  3. $63$

  4. $64$


Correct Option: C
Explanation:

We have,

 $1 + n + n^2 ..... n^{125}$
$=\dfrac{n^{126}-1}{n-1}$
$=\dfrac{(n^{63})^2-1}{n-1}$
$=\dfrac{(n^{63}-1)(n^{63}+1)}{n-1}$
This will be divisible by $n^m+1$ for largest $m$ when $m=63$.

The sum of the first three terms of an increasing G.P. is $13$ and their product is $27$. The sum of the first $5$ terms is,

  1. $323$

  2. $363$

  3. $109$

  4. $254$


Correct Option: B
Explanation:

Let the G.P be $\dfrac{a}{r}, a, ar$.


So,
$\dfrac{a}{r}+ a+ ar=13$

And
$\dfrac{a}{r}\times  a\times  ar=27$

$a^3=27$
$a=3$

Therefore,
$\dfrac{3}{r}+ 3+ 3r=13$

$3+ 3r+ 3r^2=13r$

$3r^2-10r+3=0$

$3r^2-9r-r+3=0$

$3r(r-3)-1(r-3)=0$

$(3r-1)(r-3)=0$

$r=\dfrac{1}{3}, 3$

So, $r=3$

So, the G.P is $1, 3, 9$.

Now, the sum of first five terms
$=\dfrac{3(3^5-1)}{3-1}$

$=\dfrac{3(243-1)}{2}$

$=\dfrac{3(242)}{2}$

$=3(121)=363$

Hence, this is the answer.

If $i^{2}=-1$, then sum $i+i^{2}+i^{3}+.......$ to $1000$ terms is equal to

  1. $1$

  2. $-1$

  3. $i$

  4. $0$


Correct Option: D