Tag: maths

Questions Related to maths

Solve the simultaneous equations using the convergent iterations:
$12x$ + $3y$ - $5z$ = $1$
$x$ + $5y$ +$3z$ = $28$
$3x$ + $7y$ $13z$ = $76$

  1. $x=1$, $y=4$ and $\text z =3$

  2. $x=1$, $y=3$ and $\text z =4$

  3. $x=2$, $y=3$ and $\text z =5$

  4. $x=3$, $y=2$ and $\text z =5$


Correct Option: B

Find the answer to the equation $x^{3}$ - $2x$ = $25$  to one decimal place using trial and improvement method. 

  1. $3.7$

  2. $3.2$

  3. $3.6$

  4. $3.9$


Correct Option: B
Explanation:

$f(x)={ x }^{ 3 }-2x=25$

$1.x=2$
${ x }^{ 3 }-2x=4$ (too small)

$2.\quad x=3\\ { x }^{ 3 }-2x=21$
$3.x=4{ x }^{ 3 }-2x=56$
$4.x<4\quad and\quad x>3$
$x=3.1$  
${ x }^{ 3 }-2x=23.6$ (close)
$ 5.x=3.2$
$ { x }^{ 3 }-2x=26.4$
$ x=3.2$

Use the Zero Product Property to solve the equation $(7x+2) (5x-4)=0$

  1. $\dfrac{2}{7}$ , $ \dfrac{-4}{5}$

  2. $\dfrac{-2}{7}$ , $ \dfrac{4}{5}$

  3. $\dfrac{-2}{5}$ , $ \dfrac{7}{5}$

  4. $\dfrac{2}{5}$ , $ \dfrac{-7}{5}$


Correct Option: B
Explanation:

$(7x+2)(5x-4)=0\ (7x+2)=0\quad ;\quad (5x-4)=0\ x=-\dfrac { 2 }{ 7 } \quad ;\quad x=\dfrac { 4 }{ 5 } $

The solution of the equation ${\left| {x + 1} \right|^2} - \left| {x + 2} \right| - 26 = 0$ is:

  1. $ \dfrac{-1 + \sqrt{(109)}}{2}$,$ \dfrac{-3 - \sqrt{(101)}}{2}$

  2. $ - 7,\sqrt {29} $

  3. $ \pm \sqrt {29} $

  4. $ - 7,29$


Correct Option: A
Explanation:

$|x+1|^2$ will be always non negative so we can expand it and remove modulus.


So, Equation becomes $x^2+2x-25 -|x+2| = 0$ 


For $x > -2$
$x^2 + x - 27 = 0$ which gives $x=\dfrac{-1 ^+ _-\sqrt{(109)}}{2}$
But since we assumed $x>-2$, $x=\dfrac{-1 + \sqrt{109}}{2}$

Now for $x<-2$
$x^2+3x -23$ which gives x = $\dfrac{-3 ^+ _- \sqrt{101}}{2}$
But since we assumed $x<-2$, x = $\dfrac{-3-\sqrt{101}}{2}$

$36$ factorized into two factors in such a way that sum of factors is minimum, then the factors are

  1. $2, 18$

  2. $9, 4$

  3. $3, 12$

  4. None of these


Correct Option: D
Explanation:

$36 = 1 \times 36$
     $= 2 \times 18$
     $= 3 \times 12$
     $= 4 \times 9$
     $= 6 \times 6$

1 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12

Here, $12 < 13 < 15 < 20 < 37$


$\therefore \left( {6,6} \right)$ 

None of These

The first and last term of an A.P. are $1$ and $11$. If the sum of its terms is $36$, then the number of terms will be

  1. $5$

  2. $6$

  3. $7$

  4. $8$


Correct Option: B
Explanation:

$a=1\ a+(n-1)d=11\ 1+(n-1)d=11\ (n-1)d=10$

Also, Sum $= \cfrac { [a+(a+(n-1)d)] }{ 2 } n$
$\Rightarrow 36=n\times \cfrac { 12 }{ 2 }$
$\Rightarrow n=6$

Number of real roots of equation 
(x+1) (x+2) (x+3) (x+4) -8 =0 is

  1. 0

  2. 2

  3. 4

  4. 3


Correct Option: A
Explanation:

$\begin{matrix} \left( { x+1 } \right) \left( { x+2 } \right) \left( { x+4 } \right) =8 \ { x^{ 4 } }+{ 10^{ 3 } }+35{ x^{ 2 } }+50x+16=0 \ From\, \, Oescantes\, rule\, of\, sign\, of\, \, sign\,  \ There\, will\, be\, no\, positive\, \, roots\,  \ f\left( { -x } \right) =\, \, \, { x^{ 4 } }-10{ x^{ 3 } }+35{ x^{ 2 } }-50x+60=0 \ and\, posibility\, \, of\, negative\, roots\, \, and\, 0,2\, \, or\, \, 4 \ but\, no\, \, negative\, number\, making\, this\, equation\, '0'\, \, so\, it\, has\, no\, real\, roots\,  \  \end{matrix}$

If $x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \neq 0 , x = c y + b z , y = a z + c x$ and $z = b x + a y ,$ then $a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 a b c =$

  1. 2

  2. $a + b + c$

  3. 1

  4. $ab + bc + ca$


Correct Option: C

If $f(x) = a{x^7} + b{x^3} + cx - 5 \,\,\,\,\,a,b,c$ are real constants and $f( - 7) = 7$ then the range of $f(7) + 17\cos x$ is

  1. $\left[ { - 34,0} \right]$

  2. $\left[ {0,34} \right]$

  3. $\left[ { - 34,34} \right]$

  4. $\left[ {34,\infty } \right]$


Correct Option: A
Explanation:
$f(x)=ax^7+6x^3+cx-5$

$f(-7)=7$

$f(7)+f(-7)=-10$

$f(7)+7=-10$

$f(7)=-17$

Range of $-17+17\cos x$ is form $[-34,\ 0]$



How many distinct real solutions does the equation $((x^2 - 2)^2 - 5)^2 = 1$ have ?

  1. 5

  2. 6

  3. 8

  4. 9


Correct Option: A
Explanation:

This equation is equivalent to
$(x^2 - 2)^2 - 5 = 1$  or $(x^2 -2)^2 - 5 = -1$


The first is equivalent to $x^2 - 2 = \sqrt{6}$ or $\ x^2 - 2 = - \sqrt{6}$, 
$x=\pm (2+\sqrt 6)$ or $x^2 \neq -\sqrt 6 +2 $
with $2$ and $0$ solutions respectively (since - $\sqrt{6}$ + 2 < 0).

The latter is equivalent to $x^2 - 2 = 2$ or $x^2 - 2 = -2,$ 
$x=\pm 2$ or $x=0$
with $2$ and $1$ solution(s) respectively.

So we have $2+0+2+1 = 5$ solutions in total.