Tag: maths

Questions Related to maths

If $a+b+c=6$ and $ ab+bc+ca = 11 $
Find $\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)$ ?
  1. $14$

  2. $25$

  3. $36$

  4. $47$


Correct Option: A
Explanation:
Given $a+b+c=6$ 

$(a+b+c)^2=36$

$(a^2+b^2+c^2)+2(ab+ba+ca)=36$

$a^2+b^2+c^2+(2\ast 11)=36$

$a^2+b^2+c^2=36-22=14$

Evaluating the following :
$(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$

  1. $1718\sqrt 3$

  2. $1718\sqrt 2$

  3. $1178\sqrt 3$

  4. $1178\sqrt 2$


Correct Option: D
Explanation:

Given term is $(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$


$\Rightarrow 2\left[\ ^{5}C _{1}\times 3^{4}\times (\sqrt{2})^{1}+\ ^{5}C _{3}\times 3^{2}\times (\sqrt{2})^{3}+\ ^{5}C _{5}\times 3^{0}\times (\sqrt{2})^{5}\right]$

$\Rightarrow 2\left[5\times 81\times\sqrt{2}+10\times 9\times 2\sqrt{2}+4\sqrt{2}\right]$

$\Rightarrow 2\sqrt{2}(405+180+4)$

$\Rightarrow 1178\sqrt{2}$

Evaluating the following :
$(1+2\sqrt{x})^{5}+(1-2\sqrt{x})^{5}$

  1. $2(1+40x^2+80x)$

  2. $2(1-40x+81x^2)$

  3. $2(1+40x+80x^2)$

  4. None of these


Correct Option: C
Explanation:
Given to evaluate is $(1+2\sqrt x)^5 +(1-2\sqrt x)^5$

$\Rightarrow 2[^{5}C _{0} (2\sqrt x)^0 +^5C _2 (2\sqrt x)^2 +^5C _4 (2\sqrt x)^4]$

$\Rightarrow 2[1+10\times 4x+5\times 16x^2]$

$\Rightarrow 2[1+40x+80x^2]$

What are the solutions of the equation $x^2+8x+15=0$? 

  1. $3,-5$

  2. $3,5$

  3. $5,-3$

  4. $-5,-3$


Correct Option: D
Explanation:

${ x }^{ 2 }+8x+15=0\ { x }^{ 2 }+5x+3x+15=0\ (x+5)(x+3)=0\ x=-5,-3$

If $3$ times the third term of an A.P. is equal to $5$ times the fifth term. Then its $8$ term is

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A
Explanation:

$3(a+2d)=5(a+4d)\ 3a+6d=5a+20d\ -2a=14d\ a=-7d\ a=+7d=-7d+7d={ 0 }$

If $a, b , c \in R $ and $3b^2 - 8ac < 0$ then the
equation $ax^4 + bx^3 +cx^2 +5x - 7=0$ has

  1. (a) all real roots

  2. (b) all imaginary roots

  3. (c) exactly two real and two imaginary roots

  4. (d) none


Correct Option: A

The solution to the equation ${7}^{1+x}+{7}^{1-x}=50$ is

  1. $0$

  2. $\pm 1$

  3. $2$

  4. none of these


Correct Option: B
Explanation:

$7^{1+x}+7^{1-x}=50$

$7(7^{x}+7^{-x})=50$
$7(7^{2{x}})+7=50(7^{x})$
$\implies (7^{x}-7)(7^{x+1}-1)=0$
$\implies 7^{x}=7^{1}$ or $7^{x+1}=7^{0}\implies x=\pm 1$

Solve the equation $y^2 + 2y = 40$, correct to $1$ decimal place using trial and improvement method.

  1. $5.8$

  2. $5.4$

  3. $5.7$

  4. $5.9$


Correct Option: B

The number of solution of $2\cos^2\dfrac{\pi}{2}\sin^2x=x^2+\dfrac{1}{x^2},\;0 \le x \le \dfrac{\pi}{2}$ is 

  1. Zero

  2. One

  3. Infinite many

  4. Four


Correct Option: A
Explanation:

$2\left ( \cos^2 \dfrac{\pi }{2} \right )\left ( \sin^{2}x \right )=x^{2}+\dfrac{1}{x^{2}}$

 
$=2(0) \sin^{2}x=x^{2}+\dfrac{1}{x^{2}}$ 

$=x^{2}+\dfrac{1}{x^{2}}=0$ 

not possible for any $ X\in R$ 

$\therefore $ no. of solutions = $0 $

find the value of $f(2)$ if $f(x)=x^3+x^2+x+1$

  1. 15

  2. 12

  3. 10

  4. None of these


Correct Option: A
Explanation:

$f(x)=x^3+x^2+x+1\f(2)=2^3+2^2+2+1\f(2)=8+4+2+1=15$