Tag: maths

Questions Related to maths

The value of $p$ if $\dfrac 3p+\dfrac 4p=1$

  1. 7

  2. 3

  3. 4

  4. 1


Correct Option: A
Explanation:

$\dfrac 3p+\dfrac 4p=1\3+4=p\p=7$

Simplify $(3x-11y) -(17x+13y)$ and choose the right answer. 

  1. $7x - 12y$

  2. $14x - 54y$

  3. $-3 (5x-4y)$

  4. $-2 (7x+12y)$


Correct Option: D
Explanation:
$\left(3x-11y\right)-\left(17x+13y\right)$

$=3x-11y-17x-13y$

$=-14x-24y$

$=-2\left(7x+12y\right)$

Solve $\frac { 7 y + 4 } { y + 2 } = \frac { - 4 } { 3 }$

  1. -4$/ 5$

  2. 5$/9$

  3. -9$/2$

  4. 4$/5$


Correct Option: A
Explanation:

Given $\dfrac{7 y+4}{y+2}=\dfrac{-4}{3}$

$\implies 3(7 y+4)=-4(y+2)$
$\implies 21 y+12=-4{y}-8$
$\implies 25 y=-20$
$\implies y=\dfrac{-20}{25}$
$\implies y=-\dfrac{4}{5}$

The product of $\left( { 23 x }^{ 2 }{ y }^{ 2 }z \right)$ and $\left( -15{ x }^{ 3 }{ yz }^{ 2 } \right) $ is .........................  .

  1. $-345 { x }^{ 5 } { y }^{ 3 } { z }^{ 3 }$

  2. $345 { x }^{ 2 } { y }^{ 2 } { z }^{ 3 }$

  3. $145 { x }^{ 2 } { y }^{ 2 } { z }^{ 3 }$

  4. $170 { x }^{ 2 } { y }^{ 2 } { z }^{ 3 }$


Correct Option: A
Explanation:
$\left(23{x}^{2}{y}^{2}z\right)\times\left(-15{x}^{3}y{z}^{2}\right)$
$=-345‬{x}^{2+3}{y}^{2+1}{z}^{1+2}$
$=-345{x}^{5}{y}^{3}{z}^{3}$

The number of integers (positive, negative or zero) solutions of
$xy-6(x+y)=0$ with x is less than or equal to y is:

  1. 5

  2. 10

  3. 12

  4. none of these


Correct Option: A

The degree of polynomial $p(x)=x^ {2}-3x-4x^ {3}-6$ is

  1. $2$

  2. $1$

  3. $3$

  4. $6$


Correct Option: C
Explanation:

Given : $p{\left( x \right)} = {x}^{2} - 3x - 4 {x}^{3} - 6$


Since the greatest exponent in $p{\left( x \right)}$ is $3$, thus the degree of $p{\left( x \right)}$ is $3$.

The method of finding solution by trying out various values for the variable is called

  1. Rrror method

  2. Trial and error method

  3. Testing method

  4. Checking method


Correct Option: B
Explanation:

The required method is called "Trial and error method"

If $a\times b=\frac {a}{b}+\frac {b}{a}-ab$, then the value of $1^*2$ is

  1. 2

  2. 1/2

  3. 2/3

  4. 1


Correct Option: B
Explanation:

$1^*2=\frac {1}{2}+\frac {2}{1}-1\times 2=\frac {1+4-4}{2}=\frac {1}{2}$

If $(8x)^2 + (6x)^2 = d^2$ and $d = 200$, then $8x \times 6x$ is equal to

  1. 18,200

  2. 18,500

  3. 18,900

  4. 19,200


Correct Option: D
Explanation:

$(8x)^2+(6x)^2=d^2$
or $64x^2+36x^2=d^2$
or $100x^2=d^2$
or $d=\sqrt {100x^2}=10x$
$10x=200$
$\therefore x=\frac {200}{10}=20$
Hence, $8x\times 6x=8\times 20\times 6\times 20=19,200$

If $2\pi rh = 2\pi r^2$ and $h = 5$, then r is equal to

  1. 5

  2. 110

  3. 15

  4. 12


Correct Option: A
Explanation:

$2\pi r h=2\pi r^2$
$2\pi \times r\times 5=2\pi r^2$ or $r=5$