Tag: maths

Questions Related to maths

$C$ is a point on the line segment joining the points $A(2,-3,4)$ and $B(8,0,10)$. If the value of $y$-coordinate of $C$ is $-2$, then the $z-$coordinate of $C$ is

  1. $4$

  2. $6$

  3. $-4$

  4. $5$


Correct Option: B
Explanation:
Let C divides line joining AB in ratio $a:b$
Let $C\equiv \left( x,y,z \right) \equiv \left( x,-2,\alpha  \right) $
So, $-2=\cfrac { -3(b)+0(a) }{ a+b } $
$-2a-2b=-3b$
So, $2a=b$
So, $z=\cfrac { 4b+10a }{ a+b } =\cfrac { 4\left( 2a \right) +10\left( a \right)  }{ a+2a } =\cfrac { 18 }{ 3 } =6$

The area of the triangle formed y a tangents to the curve $2xy=a^{2}$ and the coordinates axes is

  1. $2a^{2}$

  2. $3a^{2}$

  3. $4a^{2}$

  4. $a^{2}$


Correct Option: A

If a point P from where line drawn cuts coordinate axes at A and B(with A on x-axis and B on y-axis) satisfies $\alpha\cdot \dfrac{x^2}{PB^2}+\beta\dfrac{y^2}{PA^2}=1$, then $\alpha +\beta$ is?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A

If the points $(k, 2 - 2k), (1 - k, 2k)$ and $(-k -4, 6 - 2k)$ be collinear the possible value(s) of $k$ is/are

  1. $\displaystyle -\frac{1}{2}$

  2. $\displaystyle \frac{1}{2}$

  3. $1$

  4. $-2$


Correct Option: B,C
Explanation:

Let the three points be,

$A=(k,2-2k)$
$B=(1-k,2k)$
$C=(-k-4,6-2k)$

If $A,B,C$ to be collinear, the area of the triangle formed by these three points must be $0$.

For these points to be collinear, we know that
$\left| \begin{matrix} k & 2-2k & 1 \ 1-k & 2k & 1 \ -k & 6-2k & 1 \end{matrix} \right| =0$

$k(2k-6+2k)-(2-2k)[(1-k)+k]+1[(1-k)(6-2k)+2k^2]=0$
$4k^2-6k-2+2k+6-8k+2k^2+2k^2=0$
$8k^2-12k+4=0$
$2k^2-3k+1=0$
$(2k-1)(k-1)=0$
$k=1,\dfrac{1}{2}$

The points (1, -1), $\displaystyle \left ( -\frac{1}{2},\frac{1}{2} \right )$ and (1, 2) are the vertices of an isosceles triangle

Say yes or no.

  1. Yes

  2. No

  3. Ambiguous

  4. Data insufficient


Correct Option: A
Explanation:

Let the point (1, -1), $\displaystyle \left ( -\frac{1}{2},\frac{1}{2} \right )$ and (1, 2) be denoted by P, Q and R respectively
Now PQ = $\displaystyle \sqrt{\left ( -\frac{1}{2}-1 \right )^{2}+\left ( \frac{1}{2}+1 \right )^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2}\sqrt{2}$
QR = $\displaystyle \sqrt{\left ( 1+\frac{1}{2} \right )^{2}+\left ( 2-\frac{1}{2} \right )^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2}\sqrt{2}$
PR = $\displaystyle \sqrt{\left ( 1-1 \right )^{2}+\left ( 2+1 \right )^{2}}=\sqrt{9}=3 $
From the above we see that PQ = QR
$\displaystyle \therefore $ The triangle is isosceles

The point $(5,\,3)$ lies on line $3x+2y=18$

  1. Yes

  2. No

  3. Cant predict

  4. None


Correct Option: B
Explanation:

Put $x=5,\,y=3$ in the given equation
LHS: $3x+2y=3\times5+2\times3$
$=15+6=21$
LHS $\neq RHS$
It does not lie on line $3x+2y=18$

Identify the true statement.

  1. The $X$-axis is a vertical line

  2. The $Y$-axis is a horizontal line

  3. The scale on both the axes must be the same in a Cartesian plane

  4. The point of intersection between the $X$-axis and $Y$-axis is called the origin


Correct Option: D
Explanation:

1) A line parallel to x-axis is called a horizontal line parallel to y-axis is called a vertical line.

2) The point of intersection between the X-axis and Y-axis is called the origin $(0,0)$

If a point $P$ has coordinates $(3,4)$ in a coordinate system $X'OX\leftrightarrow  Y'OY$, and if $O$ has coordinates $(4,3)$ in another system ${X} {1}'{O} _{1}{X} _{1}\leftrightarrow  {Y} _{1}'{O} _{1}{Y} _{1}$ with $X'OX\parallel  {X} _{1}'{O} _{1}{X} _{1}$, then the coordinates of $P$ in the new system ${X} _{1}'{O} _{1}{X} _{1}\leftrightarrow  {Y} _{1}'{O} _{1}{Y} _{1}$ is _______________

  1. $(3,4)$

  2. $(1,-1)$

  3. $(7,7)$

  4. $(-1,1)$


Correct Option: C
Explanation:

Given the point P has coordinate (3,4).Similarly O has (4,3)

Given that $X'OX\leftrightarrow Y'OY\ { X } _{ 1 }^{ ' }{ O } _{ 1 }{ X } _{ 1 }\leftrightarrow { Y } _{ 1 }^{ ' }{ O } _{ 1 }{ Y } _{ 1 }\ \Longrightarrow { X }^{ ' }OX\parallel { X } _{ 1 }^{ ' }{ O } _{ 1 }{ X } _{ 1 }$
$\therefore$ Coordinate of P in new system ${ X } _{ 1 }^{ ' }O{ X } _{ 1 }\leftrightarrow { Y } _{ 1 }^{ ' }O{ Y } _{ 1 }\ =(3+4,)=(7,7)$

Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4ax+2ay+c=0$ and $5bx+2by+d=0$ lies in the fourth quadrant and is equidistant from the two axes then

  1. $2bc-3ad=0$

  2. $2bc+3ad=0$

  3. $3bc-2ad=0$

  4. $3bc+2ad=0$


Correct Option: C
Explanation:
Solve the equations of two lines to get a point and satisfy it in the third equation of a line.

$4ax+2ay+c=0$ and $5bx+2by+d=0$

Let the point of intersection be $(k, -k)$

From both equations, we get 

$4ak-2ak+c=0\ ,\ 5bk-2bk+d=0$

$2ak+c=0\ ,\ 3bk+d=0$

$k=\dfrac{-c}{2a}\ ,\ k=\dfrac{-d}{3b}$

$\dfrac{-c}{2a}=\dfrac{-d}{3b}$

$\therefore 3bc-2ad=0$

Option C

The points $A\left( {2a,\,4a} \right),\,B\left( {2a,\,6a} \right)\,$ and $C\left( {2a + \sqrt 3 a,\,5a} \right)$ (when $a>0$) are vertices of 

  1. an obtuse angled triangle

  2. an equilateral triangle

  3. an isosceles obtuse angled triangle

  4. a right angled triangle


Correct Option: B
Explanation:

Consider the given point

$A\left( 2a,4a \right),\,B\left( 2a,6a \right)\,and\,C\left( 2a+\sqrt{3}a,5a \right)$

Distance between AB,BC and CA  respectively.

$ AB=\sqrt{{{\left( 2a-2a \right)}^{2}}+{{\left( 4a-6a \right)}^{2}}} $

$ =\sqrt{0+{{(-2a)}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

$ BC=\sqrt{{{\left( 2a-(2a+\sqrt{3}a) \right)}^{2}}+{{\left( 6a-5a \right)}^{2}}} $

$ =\sqrt{3{{a}^{2}}+{{a}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

$ CA=\sqrt{{{\left( 2a+\sqrt{3}a-2a \right)}^{2}}+{{\left( 5a-4a \right)}^{2}}} $

$ =\sqrt{3{{a}^{2}}+{{a}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

Hence, $AB=BC=CA$

It is an equilateral triangle.

Option (B) is correct answer.